

Manuál - BMV-700

Monitor baterie

Rev 12 - 05/2023 Tato příručka je k dispozici také v HTML5.

ČEŠTINA

Obsah

1. Bezpečnostní opatření	1
1 1. Obecná bezpečnostní opatření	1
1.2. Bezpečnostní upozornění týkající se baterií	
1.3. Přeprava a skladování	
······	
2. Uvod	2
2.1. Monitor baterie	
2.2. Proč bych měl sledovat baterii?	2
2.3. Dimenzování	2
2.4. Aplikace VictronConnect	
2.5. Příslušenství	
3. Instalace	4
3.1. Co je v krabici?	4
3.2. Montáž bočníku	4
3.3. Montáž hlavní jednotky	5
3.4. Přehled připojení	7
3.5. Základní elektrická připojení	7
3.6. Programovatelné relé	8
3.7. Použití alternativních šuntů	8
3.8. Připojení zařízení GX	
4. Konfigurace	10
4.4. Drůvedeo postovoním	
4. I. Pruvodce nastavenim	10
4.2. Automaticka detekce napeti	10
4.3. Jak Zmenit nastaveni	10
4.3.1. Nastaveni prostreonictvim niavni jednotky	10
4.4. AKtualizace IIIIIwaru	
4.5. Movedle Zakladni naslaveni	
4.5.2. Nastavení nounoty nabijeneno napetí	
4.0.0. Ivaslavelli slavu ilabili	13 40
T.O. 1 TOYEULE HASIAVETH HUTIA (V PHPAUE PULEDY)	13
5. Operace	15
5.1. Jak funquje monitor baterie?	
5.2. Přehled odečtů	15
5.3. Používání nabídek hlavní jednotky	
5.4. Trendy	
5.5. Historie	
5.5.1. Přístup k historickým datům prostřednictvím aplikace VictronConnect	17
5.5.2. Přístup k historickým datům prostřednictvím hlavní jednotky	17
5.5.3. Údaje o historii	
5.6. Alarmy	19
5.7. Synchronizace monitoru baterie	19
5.7.1. Automatická synchronizace	19
5.7.2. Ruční synchronizace	
6 Pronojaní	04
6.1. Aplikace VictronConnect přes USB	21
6.2. Připojení k zařízení GX a portálu VRM	21
6.3. Připojení k síti VE.Smart	
6.4. Vlastní integrace	
7. Všechny funkce a nastavení	
7.1 lok = m × nit nontovaní	
 I. Jak Zmenii nastaveni 7.1.1. Dřístup k postovoní prostřednictvím blovní jednotky 	
7.1.1. Pristup k nastaveni prostrednictvim niavni jednotky	
7.1.2. Filisiup k nasiaveni prostreunicivim aplikace VictronConnect	23
7.1.3. Unadam, nacham a sulem nastavem v aplikaci victronconnect	

7.2.1.	Kapacita baterie	.23
7.2.2.	Nabité napětí	.24
7.2.3.	Podlaha pro vypouštění	.24
7.2.4. 2	Zadni proud Doba datakao nabiti	.24 24
7.2.3.1	Doba delekce Habili Pelikerti'u evnonent	24
7.2.7.	Faktor účinnosti nabíjení.	.25
7.2.8.	Aktuální prahová hodnota	.25
7.2.9.	Průměrná doba do odchodu	.25
7.2.10.	Synchronizované spouštění baterie	.25
7.2.11.	Stav nabití	.26
7.2.12.	Synchronizace SoC na 100 %	.26
7.2.13. 7.3. Nastaven	n raidinade nuioveno proudu	.20
7.3.1	Režim relé	26
7.3.2.	Inverzní relé	.27
7.3.3.	Stav relé	.27
7.3.4.	Minimální doba sepnutí relé	.27
7.3.5. 2	Zpoždění vypnutí relé	.27
7.3.6.	Relé nízkého stavu nabití (SoC)	.27
7.3.7.1	Nízkonapěťové relé	.28
7.4 Nootovon	vysokonapetove rele	.28
7.4. Naslaven 7.4.1	li didillu Bzučák alarmu	.20
7.4.2.1	Nastavení alarmu nízké SoC	.29
7.4.3.	Alarm nízkého napětí	.29
7.4.4.	Vysokonapěťový alarm	.29
7.5. Nastaven	ıí displeje	.29
7.5.1.	Intenzita podsvícení	.29
7.5.2.	Stále zapnuté podsvícení	.29
7.5.3.1	Rychlost posouvani	.30
7.5.4.1	Hiavni displej napeti	.30
7.5.5.7	Antuali i zobrazeni nanájení	.30
7.5.7. 5	Spotřebovaný displei Ah	.30
7.5.8.2	Zobrazení stavu nabití	.30
7.5.9. 2	Zobrazení času do odjezdu	.30
7.6. Různá na	astavení	.31
7.6.1.	Verze softwaru	.31
7.6.2. (Obnovení výchozich nastavení	.31
7.0.3.	Vymazat nistoni	.31
7.0.4.1	Naslaveni zaniku Ročníkový proud	32
7.6.6.	Boční napětí.	.32
7.6.7.	Synchronizované spouštění baterie	.32
7.7. Další nas	tavení	.32
7.7.1. (Obnovení historie	.32
7.7.2. (Obnovení kódu PIN	.32
7.7.3.	Seriove cisio	.32
7.7.4.	Viasini nazev	.32 32
776 (Obnovení výchozího nastavení	33
111.0.		
0 Kanaalta hataria	- Dealerster survey	~ ~
8. Kapacita baterie	a Peukertuv exponent	.34
v		
 Řešení problémů 	l	.36
9.1. Problémy	/ s funkčností	.36
9.1.1.	Jednotka je mrtvá	.36
9.1.2. I	Nelze změnit nastavení VictronConnect	.36
9.2. Problémy	/ s připojením	.36
9.2.1.1	Neize se pripojit pres Bluetooth	.36
9.2.2. 9.3 Neenrów	∠uala rouu r'iiv	36
9.3.1 l	Nabíjecí a vvbíjecí proud isou obrácené	36
9.3.2. 1	Neúplný aktuální odečet	.37
9.3.3.	Proud se odečítá, zatímco žádný proud neteče	.37
9.3.4. I	Nesprávný údaj o stavu nabití	.38
9.3.5. (Chybí stav nabití	.38
9.3.6.	Stav nabití nedosahuje 100 %	.38
9.3.7.	Stav nabití vždy ukazuje 100 %	.39
9.3.8.	Stav nabití se při nabíjení nezvyšuje dostatečně rychle nebo příliš rychle	.39

ři nabíjení r	iezvyšuje	dosta	tečně	rychle neb
	W vie	stron	energy	Í

700	
9.3.9. Nesprávné měření napětí baterie	
9.3.10. Problémy se synchronizací	
10. Technické údaje	
10.1. Technické údaje	40
11. Příloha	
11.1. Rozměry hlavní jednotky BMV	41
11.2. Rozměry bočníku	

1. Bezpečnostní opatření

1.1. Obecná bezpečnostní opatření

Pečlivě si přečtěte tuto příručku. Obsahuje důležité pokyny, které je třeba dodržovat při instalaci, provozu a údržbě.

Tyto pokyny si uložte pro budoucí použití a údržbu.

1.2. Bezpečnostní upozornění týkající se baterií

Práce v blízkosti olověného akumulátoru je nebezpečná. Při provozu baterií mohou vznikat výbušné plyny. V blízkosti akumulátoru nikdy nekuřte ani nepřipusťte vznik jisker nebo plamene. V okolí akumulátoru zajistěte dostatečné větrání.

Používejte ochranu očí a oděvu. Při práci v blízkosti baterií se nedotýkejte očí. Po skončení práce si umyjte ruce.

Pokud se kyselina z baterie dostane na kůži nebo do oděvu, okamžitě je omyjte vodou a mýdlem. Pokud se kyselina dostane do očí, okamžitě je zalijte tekoucí studenou vodou po dobu nejméně 15 minut a okamžitě vyhledejte lékařskou pomoc.

Při používání kovových nástrojů v blízkosti baterií buďte opatrní. Pád kovového nástroje na baterii může způsobit zkrat a případně výbuch.

Při práci s baterií odstraňte osobní kovové předměty, jako jsou prsteny, náramky, náhrdelníky a hodinky. Baterie může vytvářet zkratový proud dostatečně vysoký na to, aby roztavil předměty, jako jsou prsteny, a způsobit vážné popáleniny.

1.3. Přeprava a skladování

Tento výrobek skladujte v suchém prostředí.

Tento výrobek skladujte při teplotách od -40 °C do +60 °C.

2. Úvod

2.1. Monitor baterie

BMV-700 je monitor baterií. Měří napětí a proud baterie. Na základě těchto měření vypočítá stav nabití akumulátoru a dobu do vybití. Sleduje také historické údaje, například nejhlubší vybití, průměrné vybití a počet nabíjecích a vybíjecích cyklů.

Všechny sledované parametry baterie lze odečítat a nastavení měnit pomocí displeje a čtyř tlačítek.

Připojení k aplikaci VictronConnect je možné přes Bluetooth nebo USB. Pomocí aplikace VictronConnect lze odečítat všechny sledované parametry baterie nebo měnit nastavení. Pro připojení přes Bluetooth je zapotřebí volitelný klíč VE.Direct Bluetooth Smart. Pro připojení přes USB je zapotřebí volitelné rozhraní VE.Direct to USB.

Pokud je monitor baterie připojen k zařízení GX, například Cerbo GX nebo ColorControl GX, lze baterii sledovat lokálně pomocí zařízení GX nebo vzdáleně prostřednictvím portálu VRM.

Po připojení k ostatním produktům Victron prostřednictvím sítě VE.Smart může monitor baterie poskytovat údaje o baterii v reálném čase, jako je napětí a proud baterie, prostřednictvím rozhraní Bluetooth pro použití v solárních nabíječkách Victron a vybraných nabíječkách střídavého proudu.

2.2. Proč bych měl sledovat baterii?

Baterie se používají v celé řadě aplikací, většinou k uchovávání energie pro pozdější použití. Kolik energie je však v baterii uloženo? Pouhým pohledem to nikdo nezjistí. Životnost baterií závisí na mnoha faktorech. Životnost baterií může být zkrácena nedostatečným nabíjením, přebíjením, příliš hlubokým vybíjením, nadměrným nabíjecím nebo vybíjecím proudem a vysokou okolní teplotou. Sledování baterie pomocí monitoru baterie poskytne uživateli důležitou zpětnou vazbu, aby mohl v případě potřeby přijmout nápravná opatření. Tím se prodlouží životnost baterie a monitor baterie se rychle vrátí.

2.3. Dimenzování

Monitor baterie je k dispozici v jedné velikosti; má bočník 500 A. Je však možné použít monitor baterií s většími bočníky až do 9999 A. Větší bočníky nejsou součástí dodávky. Informace o bočnících 1000A, 2000A nebo 6000A naleznete na stránce produktu Bočníky.

2.4. Aplikace VictronConnect

Ke sledování a konfiguraci monitoru baterie lze použít aplikaci VictronConnect. Všimněte si, že konfigurace monitoru baterie pomocí aplikace VictronConnect je jednodušší než konfigurace pomocí hlavní jednotky monitoru baterie.

Aplikace VictronConnect se může k monitoru baterie připojit prostřednictvím:

- · Bluetooth pomocí volitelného klíče VE.Direct Bluetooth Smart.
- USB pomocí volitelného rozhraní VE.Direct to USB.
- · Vzdáleně prostřednictvím zařízení GX a portálu VRM.

Aplikace VictronConnect je k dispozici pro následující platformy:

- Android.
- · Apple iOS (Všimněte si, že USB není podporováno, lze se připojit pouze přes Bluetooth).
- macOs.
- · Windows (Všimněte si, že Bluetooth není podporováno, je možné se připojit pouze přes USB).

Aplikaci VictronConnect si můžete stáhnout z obchodů s aplikacemi nebo ze stránky produktu VictronConnect nebo naskenovat níže uvedený QR kód.

2.5. Příslušenství

Tyto volitelné součásti mohou být potřebné v závislosti na vašem nastavení:

- · Zařízení GX, například Cerbo GX pro monitorování systému a/nebo vzdálené monitorování.
- VE.Direct kabel pro připojení monitoru baterie k zařízení GX.
- VE.Direct to USB interface pro připojení monitoru baterie přes USB k zařízení GX nebo k aplikaci VictronConnect.
- VE.Direct Bluetooth Smart dongle pro přidání funkce Bluetooth k monitoru baterie.
- Nástěnný kryt pro BMV nebo MPPT Control používá se v případě, že není možná montáž hlavní jednotky monitoru baterií na panel.
- Nástěnná skříň pro BMV a Color Control GX slouží k montáži hlavní jednotky bateriového monitoru na stěnu společně s Color Control GX do stejné skříně.
- Kabel RJ12 UTP použijte v případě, že je dodaný 10m kabel RJ12 (kabel mezi bočníkem a hlavní jednotkou) příliš dlouhý nebo příliš krátký. Tyto kabely jsou k dispozici v různých délkách od 30 cm do 30 metrů (1 stopa až 98 stop).

3. Instalace

3.1. Co je v krabici?

Hlavní jednotka BMV-700 spolu s upevňovacím pouzdrem.	
500A bočník.	
1,5m (59") červený kabel s pojistkou 1A.	
10m kabel RJ12 UTP.	
Čtvercová čelní deska spolu s upevňovací přírubou.	
Sáček se 4 malými šrouby.	T
Rychlý průvodce instalací.	
Náhradní nálepka se sériovým číslem.	81.001.001.001.00 SN HO122446739 PUKO1122466789

3.2. Montáž bočníku

Bočník má krytí IP21; to znamená, že není vodotěsný a musí být namontován na suchém místě.

Bočník má dva otvory o průměru 5,5 mm pro montáž, které jsou umístěny v základně bočníku. Otvory lze použít k přišroubování nebo přišroubování bočníku na pevný povrch (upozorňujeme, že tyto šrouby nejsou součástí dodávky).

Přesné umístění montážních otvorů naleznete na rozměrovém výkresu [42] v příloze této příručky.

Pohled shora na bočník s vyznačením montážních otvorů a boční pohled na bočník s vyznačením způsobu montáže.

3.3. Montáž hlavní jednotky

Hlavní jednotku lze namontovat různými způsoby:

- A. Při montáži na panel je hlavní jednotka upevněna na zadní straně panelu.
- B. Při montáži na panel je hlavní jednotka upevněna na přední straně panelu.
- C. Montáž na stěnu pomocí volitelného krytu pro montáž na stěnu.

Způsob montáže A.

Úplný návod k montáži na stěnu naleznete v instalačních příručkách pro montáž na stěnu na produktových stránkách Nástěnný kryt pro BMV nebo MPPT Control nebo Nástěnný kryt pro BMV a Color Control GX.

3.4. Přehled připojení

#	Název	Typ terminálu
А	Zobrazit	-
В	Tlačítko nastavení	-
С	Tlačítko dolů	-
D	Tlačítko nahoru	-
E	Tlačítko Select	-
F	Konektor RJ12	Svorka RJ2
G	Bzučák	-
Н	Konektor programovatelného relé	Push konektor
I	Přímý konektor VE.Direct	Terminál VE.Direct
J	Záporné připojení baterie	Šroub M10
К	Kladné připojení baterie	Push konektor
М	Připojení záporné zátěže	Šroub M10

3.5. Základní elektrická připojení

Postup připojení:

1. Připojte záporný pól baterie ke šroubu M10 na straně "BATTERY ONLY" bočníku. Šroub bočníku utáhněte maximálním utahovacím momentem 21 Nm.

Všimněte si, že na této straně bočníku ani na záporném pólu baterie by neměly být žádné další spoje. Jakékoli zátěže nebo nabíječky zde připojené budou z výpočtu stavu nabití baterie vyloučeny.

- Připojte záporný vodič elektrického systému ke šroubu M10 na straně "ZATĺŽENÍ A NABĺJENÍ" bočníku. Šroub bočníku utáhněte maximálním utahovacím momentem 21 Nm. Ujistěte se, že zápory všech stejnosměrných zátěží, střídačů, nabíječek akumulátorů, solárních nabíječek a dalších zdrojů nabíjení jsou připojeny "za" bočníkem.
- 3. Připojte kolík červeného kabelu s pojistkou k bočníku tak, že kolík zasunete do svorky "+B1".
- 4. Připojte očko M10 červeného kabelu s pojistkou ke kladnému pólu baterie.
- Připojte bočník k hlavní jednotce pomocí kabelu RJ12. Jednu stranu kabelu RJ12 zapojte do svorky RJ12 bočníku a druhou stranu kabelu do svorky RJ12 na zadní straně hlavní jednotky.

Monitor baterie je nyní napájen. Displej je aktivní,.

Aby byl monitor baterie plně funkční, musí být nakonfigurován; viz kapitola Konfigurace [10].

Základní instalace monitoru baterie.

3.6. Programovatelné relé

Monitor baterie je vybaven programovatelným relé. Toto relé lze použít jako poplachové relé, ke spuštění generátoru nebo pro jiné aplikace. Další informace o různých režimech relé a o jeho konfiguraci naleznete v kapitole Nastavení relé [26].

Příkladem použití relé je spuštění generátoru, když stav nabití baterií klesne příliš nízko, a následné zastavení generátoru, když se baterie znovu nabijí.

Ve výchozím nastavení je relé nastaveno tak, aby se sepnulo, když stav nabití baterie klesne pod 50 %, a rozepnulo se, když stav nabití baterie stoupne na 90 %. Relé však lze nakonfigurovat tak, aby se spouštělo i při jiných podmínkách, například při napětí baterie.

Relé má 2 kontakty: Jsou umístěny na zadní straně hlavní jednotky a mají kontakty COM (společný) a NO (normálně otevřený).

Když je kontakt relé rozepnutý, cívka je bez napětí; mezi COM a NO není žádný kontakt. Když je relé pod napětím, relé sepne a dojde ke kontaktu mezi COM a NO. Funkci relé lze obrátit: z beznapěťového stavu se stane napěťový a naopak. Viz nastavení Invertovat relé [27].

Vnitřní schéma zapojení monitoru baterie s relé v beznapěťovém stavu připojeným k externímu obvodu alarmu nebo startování generátoru.

3.7. Použití alternativních šuntů

Monitor baterií je dodáván s bočníkem 500 A, 50 mV. Tento bočník je vhodný pro většinu aplikací. Pokud se však očekávají systémové proudy vyšší než 500 A, je třeba použít větší bočník.

Monitor baterie lze nakonfigurovat pro práci s celou řadou různých bočníků. Lze použít bočníky až do 9999 A a až do 75 mV. Výběr větších bočníků, tj. 1000A, 2000A nebo 6000A, naleznete na naší produktové stránce bočníků.

Při použití jiného bočníku, než který je dodáván s monitorem baterií, postupujte následovně:

- 1. Odšroubujte desku plošných spojů z bočníku.
- Namontujte desku plošných spojů na nový bočník a zajistěte, aby byl mezi deskou plošných spojů a bočníkem dobrý elektrický kontakt.

- Připojte nový bočník k elektrickému systému a k hlavní jednotce monitoru baterie, jak je uvedeno v kapitole Základní elektrická připojení [7]. Zvláštní pozornost věnujte orientaci desky s obvody bočníku vzhledem k připojení baterie a zátěže.
- 4. Postupujte podle průvodce nastavením; viz kapitola Průvodce nastavením [10].
- Po dokončení průvodce nastavením nastavte správný bočníkový proud a boční napětí podle nastavení Bočníkový proud [32] a Boční napětí [32].
- Pokud monitor baterie ukazuje nenulový proud, i když není zatížený, a baterie se nenabíjí, zkalibrujte nulový údaj proudu pomocí nastavení Kalibrace nulového proudu [26].

3.8. Připojení zařízení GX

Pokud systém obsahuje zařízení GX, například Cerbo GX, lze monitor baterie připojit k zařízení GX pomocí kabelu VE.Direct nebo rozhraní VE.Direct to USB.

Po připojení lze ze zařízení GX vyčíst všechny sledované parametry baterie. Další informace naleznete v kapitole Připojení k zařízení GX a portálu VRM [21].

Monitor baterie je připojen k zařízení Cerbo GX a dotykové obrazovce GX.

4. Konfigurace

Jakmile jsou provedena elektrická připojení a monitor baterií je napájen, je třeba jej nakonfigurovat tak, aby byl vhodný pro systém, ve kterém je používán.

To lze provést pomocí tlačítek na hlavní jednotce monitoru baterie nebo ještě snadněji pomocí aplikace VictronConnect. Vezměte na vědomí, že je vyžadován klíč VE.Direct Bluetooth Smart nebo rozhraní VE.Direct na USB.

Tato kapitola popisuje konfiguraci monitoru baterie pomocí základních nastavení. Všechna nastavení a funkce naleznete v kapitole Všechny funkce a nastavení [23].

4.1. Průvodce nastavením

Monitor baterií automaticky spustí průvodce nastavením při prvním zapnutí nebo po obnovení továrního nastavení. Průvodce nastavením musí být dokončen před provedením dalších nastavení.

- 1. Na displeji se zobrazuje rolovací text "kapacita baterie": http://www.baterie
- Stisknutím libovolného tlačítka vstoupíte do průvodce nastavením. Rolující text se zastaví a zobrazí se výchozí hodnota kapacity baterie z výroby (200 Ah) s blikající první číslicí.
- Pomocí tlačítek + a nastavte první číslici hodnoty kapacity baterie. Přednostně použijte hodnotu kapacity baterie 20 hodin (C20). Další informace o kapacitě baterie naleznete v kapitole Kapacita baterie a Peukertův exponent [34].
- 4. Stisknutím tlačítka SELECT nastavíte stejným způsobem další číslici. Tento krok opakujte, dokud se nezobrazí požadovaná kapacita baterie.
- 5. Stisknutím tlačítka SELECT hodnotu uložíte. Krátké pípnutí to potvrdí.

Pokud je třeba provést opravu, stiskněte znovu tlačítko SELECT a opakujte předchozí kroky.

6. Stisknutím tlačítka SETUP, + nebo - ukončíte průvodce nastavením a přepnete do běžného provozního režimu.

Ihned po dokončení průvodce nastavením monitor baterie automaticky zjistí jmenovité napětí bateriového systému. Podrobnosti a omezení automatické detekce napětí naleznete v následující kapitole Automatická detekce napětí [10].

Monitor baterií je nyní připraven k použití. Nyní je nastaven pro průměrný systém s GEL, AGM nebo zaplavenými olověnými akumulátory. Další konfigurace monitoru baterií jsou nutné, pokud váš systém obsahuje baterie s jiným chemickým složením, například lithiové, nebo pokud je třeba provést jiná specifická nastavení systému. Viz kapitola Všechny funkce a nastavení [23].

Pokud se průvodce nastavením nezobrazuje, tj. není zobrazen rolovací text, lze jej znovu aktivovat provedením resetu monitoru baterie. Provedete to takto: stiskněte současně tlačítko SETUP a tlačítko SELECT na dobu 3 sekund. Tím dojde k obnovení továrního nastavení monitoru baterie.

Všimněte si, že tovární nastavení lze obnovit pouze v případě, že nastavení Lock setup [31] bylo nastaveno na OFF

4.2. Automatická detekce napětí

Monitor baterie se automaticky nastaví na jmenovité napětí akumulátoru. K tomu dojde ihned po dokončení průvodce nastavením. Níže uvedená tabulka ukazuje, jak se jmenovité napětí určuje a na jaké jmenovité napětí baterie se monitor baterie automaticky nastaví. Další informace naleznete v kapitole Nastavení hodnoty nabíjeného napětí [13].

Naměřené napětí	Předpokládané jmenovité napětí
< 18V	12V
18 - 36V	24V
> 36V	48V

Všimněte si, že monitor baterie není schopen detekovat jmenovité napětí baterie 32 V. Pokud je monitor baterií používán s bateriovou baterií 32V, musí být nabíjené napětí nastaveno ručně pomocí nastavení Nabíjené napětí [24].

4.3. Jak změnit nastavení

4.3.1. Nastavení prostřednictvím hlavní jednotky

Pomocí tlačítek na displeji vstupte do nabídky nastavení a procházejte jí. Každé nastavení má číslo a název. Například: "01 - Kapacita baterie". Úplný seznam všech nastavení baterie a jejich odpovídající čísla naleznete v kapitole Všechny funkce a nastavení [23].

Nastavení monitoru baterie je možné (a jednodušší) provést také prostřednictvím aplikace VictronConnect. Postup najdete v kapitole Aplikace VictronConnect [11].

Displej a tlačítka hlavní jednotky BMV.

Přístup do nabídky nastavení a změna nastavení:

1	Spusťte hlavní nabídku.	MAIN
2	Stisknutím tlačítka SETUP na dvě sekundy vstoupíte do nabídky nastavení.	
3	Zobrazí se první položka nastavení 01-Kapacita baterie.	SETUP
4	Pomocí tlačítek + a - přejděte na požadovanou položku nastavení.	
5	Stisknutím tlačítka SELECT přejděte k položce nastavení.	
6	Pomocí tlačítka SELECT a tlačítek + a - upravte nastavení.	SETUP
7	Stisknutím tlačítka SETUP se vrátíte do nabídky nastavení.	
8	Pomocí tlačítek + nebo - přejděte na další nastavení.	
9	Po provedení všech nastavení se stisknutím tlačítka SETUP vrátíte z nabídky nastavení do normálního režimu.	

4.3.2. Aplikace VictronConnect

Pomocí aplikace VictronConnect lze měnit všechna nastavení a aktualizovat firmware.

Způsoby připojení k monitoru baterie:

- · Místně přes USB pomocí rozhraní VE.Direct to USB připojeného k portu VE.Direct.
- · Místně přes Bluetooth pomocí klíče VE.Direct Bluetooth Smart připojeného k portu VE.Direct.
- Vzdáleně prostřednictvím zařízení GX pomocí funkce VictronConnect "Remote". Další informace naleznete v kapitole VictronConnect-Remote v příručce k aplikaci VictronConnect.

Jak se připojit pomocí aplikace VictronConnect k monitoru baterie:

- Otevřete aplikaci VictronConnect.
- Zkontrolujte, zda je monitor baterie napájen.
- · Monitor baterie se objeví v seznamu zařízení na kartě "Místní" nebo "VRM".
- · Klikněte na monitor baterie.
- V případě připojení přes Bluetooth zadejte výchozí kód PIN: 000000. Po zadání výchozího kódu PIN vás aplikace VictronConnect vyzve ke změně kódu PIN. To proto, aby se v budoucnu zabránilo neoprávněným připojením. Doporučujeme změnit kód PIN při první instalaci.

Chcete-li zobrazit a/nebo změnit nastavení monitoru baterie, přejděte na stránku nastavení kliknutím na ikonu ozubeného kolečka v pravém horním rohu domovské obrazovky.

Obrazovky monitorování a nastavení monitoru baterie v aplikaci VictronConnect.

Všimněte si, že tato příručka se zabývá pouze položkami, které jsou specifické pro monitor baterie. Obecnější informace o aplikaci VictronConnect, například jak ji používat a kde ji stáhnout nebo jak se připojit, najdete na stránce produktu a v příručce k aplikaci VictronConnect.

4.4. Aktualizace firmwaru

Při nové instalaci se doporučuje aktualizovat firmware monitoru baterie. Pokud je k dispozici novější verze firmwaru, aplikace VictronConnect vás na to upozorní, jakmile dojde ke spojení s monitorem baterie.

Upozorňujeme, že firmware lze aktualizovat pouze prostřednictvím aplikace VictronConnect. Aplikace musí být aktuální, aby bylo možné přistupovat k nejnovějšímu firmwaru.

Chcete-li zkontrolovat, zda je firmware aktuální, nebo firmware aktualizovat ručně, připojte se k monitoru baterie pomocí aplikace VictronConnect a postupujte podle následujících kroků:

- Přejděte do nastavení produktu kliknutím na symbol "ozubeného kolečka" 🌣 v pravém horním rohu obrazovky stavu produktu.
- Klikněte na symbol "3 tečky" v pravém horním rohu obrazovky nastavení.
- · V rozbalovací nabídce vyberte možnost "Informace o produktu".
- Zobrazí se verze firmwaru. Je uvedeno, zda se jedná o nejnovější verzi firmwaru (nebo ne). Pokud je k dispozici novější verze firmwaru, zobrazí se tlačítko "UPDATE".

· Chcete-li aktualizovat firmware, stiskněte tlačítko "UPDATE".

4.5. Proveďte základní nastavení

Výchozí nastavení monitoru baterií je přizpůsobeno olověným bateriím, jako jsou baterie AGM, GEL, OPzV nebo OPzS.

Většina nastavení může zůstat na výchozích hodnotách z výroby. Existuje však několik nastavení, která je třeba změnit.

Jedná se o následující nastavení:

- Kapacita baterie.
- Nabité napětí.
- · Stav nabití nebo synchronizovaný start.

Pokud jsou použity lithiové baterie (nebo baterie s jiným chemickým složením), je třeba změnit některá další nastavení.

Nejprve proveďte základní nastavení popsaná v tomto odstavci a poté se podívejte na další odstavec, kde najdete speciální nastavení lithia.

Další informace o těchto a dalších nastaveních naleznete v kapitole Všechny funkce a nastavení [23].

4.5.1. Nastavení hodnoty kapacity baterie

V aplikaci VictronConnect viz: Nastavení > Baterie.

Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 01 - Kapacita baterie.

Monitor baterie je ve výchozím nastavení nastaven na 200 Ah. Změňte tuto hodnotu tak, aby odpovídala kapacitě vaší baterie. U olověných akumulátorů doporučujeme zadat hodnotu 20 hodin (C20).

4.5.2. Nastavení hodnoty nabíjeného napětí

V aplikaci VictronConnect viz: Nastavení > Baterie > Nabité napětí.

Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 02 - Nabíjecí

napětí.

Přestože monitor baterie automaticky detekuje napětí, je vhodné zkontrolovat, zda je toto nastavení správně nastaveno.

Jedná se o doporučené hodnoty "Nabitého napětí" pro olověné akumulátory:

Jmenovité napětí baterie	Doporučené nastavení nabíjeného napětí
12V	13.2V
24V	26.4V
36V	39.6V
48V	52.8V

Další informace naleznete také v kapitole Nabité napětí [24].

4.5.3. Nastavení stavu nabití

V aplikaci VictronConnect viz: Nastavení > Baterie > Spuštění synchronizace

baterie. Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 70 - Spustit

synchronizovaně.

Pokud je nastaveno na ON, bude se monitor baterie po zapnutí považovat za synchronizovaný a výsledkem bude stav nabití 100 %. Pokud je nastavena hodnota OFF, bude se monitor baterie při zapnutí považovat za nesynchronizovaný, což bude mít za následek stav nabití, který je až do první skutečné synchronizace neznámý.

Pouze pro VictronConnect: Ve výchozím nastavení je tato hodnota 100 % a na přání ji lze nastavit na jinou hodnotu. Viz: Nastavení > Baterie > Stav nabití.

4.6. Proveďte nastavení lithia (v případě potřeby)

LiFePO4 (lithium-železo-fosfát nebo LFP) je nejpoužívanější chemický typ Li-ion baterie. Výchozí nastavení z výroby platí obecně i pro baterie LFP s výjimkou těchto nastavení:

- · Zadní proud.
- Peukertův exponent.
- Účinnost nabíjení.
- Podlaha pro vypouštění.

Zadní proud

V aplikaci VictronConnect viz: Nastavení > Baterie > Zadní proud.

Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 03 - Zadní proud.

Některé nabíječky lithiových baterií přestanou nabíjet, když proud klesne pod nastavenou mez. V takovém případě musí být zadní proud nastaven vyšší.

Peukertův exponent

V aplikaci VictronConnect viz: Nastavení > Baterie > Peukertův exponent.

Prostřednictvím hlavní jednotky viz: Peukertův exponent.

Při vysokém vybíjení jsou lithiové baterie mnohem výkonnější než olověné baterie. Peukertův exponent nastavte na hodnotu 1,05, pokud dodavatel baterií nedoporučuje jinak.

Účinnost nabíjení

V aplikaci VictronConnect viz: Nastavení > Baterie > Faktor účinnosti nabíjení.

Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 06 - Faktor účinnosti nabíjení.

Účinnost nabíjení lithiových baterií je mnohem vyšší než u olověných baterií. Doporučujeme nastavit účinnost nabíjení na 99 %.

Podlaha pro vypouštění

V aplikaci VictronConnect viz: Nastavení > Baterie > Podlaha pro vybíjení

Prostřednictvím hlavní jednotky viz: Nastavení > Nastavení 16 - relé SoC.

Toto nastavení se používá při výpočtu "doby dojezdu" a u olověných akumulátorů je standardně nastaveno na 50 %. Lithiové baterie však lze obvykle vybít výrazně hlouběji než na 50 %. Spodní hranici vybíjení lze nastavit na hodnotu mezi 10 a 20 %, pokud dodavatel baterií nedoporučuje jinak.

4

Důležité upozornění

Lithiové baterie jsou drahé a mohou se nenávratně poškodit v důsledku velmi hlubokého vybití nebo přebití. K poškození v důsledku hlubokého vybití může dojít, pokud se baterie pomalu vybíjí malou zátěží, když se systém nepoužívá. Příkladem takových zátěží jsou poplašné systémy, pohotovostní proudy stejnosměrných zátěží a zpětný proudový odběr nabíječek baterií nebo regulátorů nabíjení.

Zbytkový vybíjecí proud je obzvláště nebezpečný, pokud byl systém vybitý až do okamžiku, kdy došlo k vypnutí při nízkém napětí článku. V tomto okamžiku může být stav nabití až 1 %. Pokud se z lithiové baterie odebírá jakýkoli zbytkový proud, dojde k jejímu poškození. Toto poškození může být nevratné.

Například zbytkový proud 1 mA může poškodit 100Ah baterii, pokud byla ponechána ve vybitém stavu déle než 40 dní (1 mA x 24 h x 40 dní = 0,96 Ah).

Monitor baterie odebírá z baterie <48 mW. Pokud je systém s Li-ion bateriemi ponechán bez dozoru po dobu dostatečně dlouhou na to, aby spotřeba monitoru baterie zcela vybila baterii, je proto nutné přerušit kladné napájení.

V případě jakýchkoli pochybností o možném odběru zbytkového proudu odpojte baterii otevřením vypínače baterie, vytažením pojistky (pojistek) baterie nebo odpojením kladného napětí baterie, pokud se systém nepoužívá.

5. Operace

5.1. Jak funguje monitor baterie?

Hlavní funkcí monitoru baterie je sledovat a indikovat stav nabití baterie, aby bylo možné zjistit, kolik náboje baterie obsahuje, a zabránit neočekávanému úplnému vybití.

Monitor baterie nepřetržitě měří průtok proudu do baterie a z baterie. Integrace tohoto proudu v průběhu času, pokud by se jednalo o pevný proud, spočívá v násobení proudu a času a dává čisté množství přidaných nebo odebraných Ah.

Například vybíjecí proud 10 A po dobu 2 hodin odebere z baterie 10 x 2 = 20 Ah.

Efektivní kapacita baterie závisí na rychlosti vybíjení, Peukertově účinnosti a v menší míře i na teplotě. A aby to bylo ještě složitější: při nabíjení baterie je třeba do ní "napumpovat" více energie (Ah), než kolik se z ní může získat při dalším vybíjení. Jinými slovy: účinnost nabíjení je menší než 100 %. Všechny tyto faktory bere monitor baterie v úvahu při výpočtu stavu nabití.

5.2. Přehled odečtů

Na displeji hlavní jednotky nebo na obrazovce monitoru stavu baterie aplikace VictronConnect se zobrazuje přehled nejdůležitějších parametrů. Jedná se o tyto údaje:

- Stav nabití
- Napětí baterie
- · Proud baterie
- Power

<u>Stav nabití</u>

Jedná se o skutečný stav nabití baterie v procentech, který je kompenzován jak Peukertovou účinností, tak účinností nabíjení. Stav nabití je nejlepším způsobem monitorování baterie.

Plně nabitá baterie je indikována hodnotou 100,0 %. Úplně vybitá baterie bude indikována hodnotou 0,0 %.

Vezměte prosím na vědomí, že pokud stav nabití ukazuje tři pomlčky: "---" znamená to, že monitor baterie je v nesynchronizovaném stavu. K tomu dochází hlavně tehdy, když byl monitor baterií právě nainstalován nebo poté, co byl monitor baterií ponechán bez napájení a je znovu zapnut. Další informace naleznete v kapitole Synchronizace monitoru baterií [19].

<u>Napětí</u>

Jedná se o svorkové napětí baterie.

<u>Aktuální</u>

Jedná se o skutečný proud tekoucí do baterie nebo z baterie. Záporný proud znamená, že je z baterie odebírán proud. Jedná se o proud potřebný pro stejnosměrné zátěže. Kladný proud znamená, že proud přichází do baterie. Jedná se o proud přicházející z

zdroje náboje. Mějte na paměti, že monitor baterie bude vždy ukazovat celkový proud baterie, tj. proud, který do baterie teče, minus proud, který z baterie teče.

Power

Energie odebíraná z baterie nebo jí přijímaná.

<u>Spotřebováno Ah</u>

Monitor baterie sleduje ampérhodiny odebrané z baterie s kompenzací účinnosti.

Příklad: Pokud je z plně nabité baterie odebírán proud 12 A po dobu 3 hodin, zobrazí se na displeji -36,0 Ah (-12 x 3 =). -36).

Vezměte prosím na vědomí, že pokud údaj "Spotřebované Ah" ukazuje tři čárky: "---", znamená to, že monitor baterie je v nesynchronizovaném stavu. K tomu dochází hlavně tehdy, když byl monitor baterií právě nainstalován nebo poté, co byl monitor baterií ponechán bez napájení a je znovu zapnut. Další informace naleznete v kapitole Synchronizace monitoru baterií [19].

Zbývající čas

Monitor baterie odhaduje, jak dlouho může baterie vydržet aktuální zatížení. Jedná se o údaj "time-to-go" (doba do vybití), který udává skutečnou dobu zbývající do vybití baterie na nastavenou "dolní mez vybití". Dolní mez vybití je standardně nastavena na 50 %. Nastavení vybíjecí podlahy viz kapitola Vybíjecí podlaha [24]. Pokud zatížení silně kolísá, je lepší na tento údaj příliš nespoléhat,

protože se jedná o momentální údaj a měl by být používán pouze jako vodítko. Pro přesné sledování stavu baterie

Pokud se na displeji "Zbývající čas" zobrazí tři pomlčky: "---" znamená to, že monitor baterie je v nesynchronizovaném stavu. K tomu dochází, když byl monitor baterií právě nainstalován nebo poté, co byl ponechán bez napájení a je znovu zapnut. Další informace naleznete v kapitole Synchronizace monitoru baterií [19].

5.3. Používání nabídek hlavní jednotky

Případně můžete použít aplikaci VictronConnect pro přístup k nastavení monitoru baterie. Postup naleznete v kapitole Aplikace VictronConnect [11].

Při prvním zapnutí monitoru baterie nebo po obnovení továrního nastavení se spustí průvodce rychlým nastavením; viz kapitola: Průvodce nastavením [10]. Poté bude monitor baterií pracovat v normálním režimu a nabídka baterií bude přístupná podle popisu v této kapitole.

Monitor baterie se ovládá čtyřmi tlačítky na hlavní jednotce. Funkce tlačítek závisí na tom, v jakém režimu se monitor baterie nachází. To je uvedeno v následující tabulce.

Pokud je podsvícení vypnuté, stisknutím libovolného tlačítka podsvícení obnovíte.

Tlačítko	Funkce v normálním režimu	Funkce v režimu nastavení
NASTAVENÍ	Stisknutím a podržením na dvě sekundy přepnete do režimu nastavení. Na displeji se zobrazí číslo a popis zvoleného parametru.	Stisknutím SETUP se kdykoli vrátíte k procházení textu a dalším stisknutím se vrátíte do normálního režimu. Stisknete-li SETUP, když je parametr mimo rozsah, displej pětkrát blikne a zobrazí se nejbližší platná hodnota.
VYBRAT	Stisknutím tlačítka přepnete do nabídky historie. Stisknutím zastavíte procházení a zobrazíte hodnotu. Dalším stisknutím se přepnete zpět do normálního režimu.	 Po vstupu do režimu nastavení pomocí tlačítka SETUP stiskněte tlačítko pro zastavení procházení. Po úpravě poslední číslice stiskněte tlačítko pro ukončení úprav. Hodnota se automaticky uloží. Krátké pípnutí signalizuje potvrzení. V případě potřeby znovu stiskněte tlačítko pro obnovení úprav.
SETUP a SELECT současně	Stisknutím a podržením obou tlačítek SETUP a SELECT současně po dobu tří sekund obnovíte tovární nastavení (vypnuto, pokud je zapnuto nastavení 64, nastavení zámku, viz Nastavení zámku [31]).	n/a
	Debut peteru	Pokud neprovádíte úpravy, stisknutím tlačítka přejdete na předchozí parametr.
Ŧ		Při úpravách se tímto tlačítkem zvýší hodnota vybrané číslice.
	Dahuh aměram dalů	Pokud neprovádíte úpravy, stisknutím tlačítka přejdete na další parametr.
-		Při úpravách toto tlačítko sníží hodnotu vybrané číslice.
+ a - současně	Stisknutím a podržením obou tlačítek současně po dobu tří sekund provedete ruční synchronizaci BMV.	n/a

5.4. Trendy

Aplikace VictronConnect umožňuje zaznamenávání dat z monitoru baterie, ale pouze v době, kdy je aplikace VictronConnect připojena a komunikuje s monitorem baterie. Současně zaznamená dva z následujících parametrů:

- Napětí (V).
- Proud (A).
- Výkon (W).
- Spotřebované ampérhodiny (Ah).

Stav nabití (%).

09:00 7	•	
← BMV-712 S	imart	٠
STATUS	HISTORY	TRENDS
Voltage (V)	✓ Current (A)	•
None		-3.4 A
Voltage (V)		
Current (A)	1	
Power (W)	101	N
Consumed Amp Hours (Ah)		NV
State of Charge (%)	VIO	N -42A
Temperature (C)		
13.13 V		-5.0 A
13.11 V		-5.8 A
13.09 V		-6.6 A
<u>Q</u> Q		н
Thindle		

Sledování trendů vývoje baterie v aplikaci VictronConnect.

5.5. Historie

Monitor baterie ukládá historické události. Ty lze později použít k vyhodnocení vzorců používání a stavu baterie.

Údaje o historii jsou uloženy v nevolatilní paměti a neztratí se, pokud bylo přerušeno napájení monitoru baterií nebo pokud byl monitor baterií resetován na výchozí hodnoty.

5.5.1. Přístup k historickým datům prostřednictvím aplikace VictronConnect

Historická data monitoru baterie jsou dostupná na kartě "Historie" v aplikaci VictronConnect.

	HISTORY	TRENDS
Deepest discharge -963Ah	Last dischi -359Ał	arge 1
Average discharge	Cumulative -51472	
Discharged energy	Charged et 14608	^{iergy} 7kWh
Total charge cycles	Time since 1d 23h	
Synchronisations		
Min battery voltage	Max batter 32.07	y voltage /

Obrazovka historie monitoru baterie aplikace VictronConnect.

5.5.2. Přístup k historickým datům prostřednictvím hlavní jednotky

Chcete-li zobrazit nabídku historie monitoru baterie, stiskněte v normálním režimu tlačítko SELECT:

- Stisknutím tlačítka + nebo můžete procházet různé parametry.
- Stisknutím tlačítka + nebo můžete procházet různé hodnoty.

- · Opětovným stisknutím tlačítka SELECT se posouvání zastaví a zobrazí se hodnota.
- Opětovným stisknutím tlačítka SELECT opustíte historické menu a vrátíte se do normálního provozního režimu.

V následující tabulce je uveden přehled parametrů historie a jejich zobrazení v nabídce. Význam jednotlivých parametrů naleznete v následující kapitole.

#	Zobrazit	Popis
A	A GEEPESE di SCHA-SE	Nejhlubší vybití
В	6 LASE di SCHA-96	Poslední propuštění
С	E RUEFRAE di SCHRFAE	Průměrné vypouštění
D	d EHELES	Cykly
E	e di seharges	Výboje
F	F ELGLERE: LE AH	Kumulativní Ah
G	9 LOVESE LOLEASE	Nejnižší napětí
Н	H H GHESE LCLEAGE	Nejvyšší napětí
I	l dAYS SLAEE LASE EHA-9E	Dny od posledního plného nabití
J	u Synch-Oni SALi Ons	Synchronizace
L	L LOY LOLEAGE ALACTS	Nízkonapěťové alarmy
М	T ALGH LIZLERGE ALALTS	Vysokonapěťové alarmy
R	r di SCHArged Energy	Vybitá energie
S	5 [HR-9Ed EnEr99	Nabitá energie

5.5.3. Údaje o historii

Informace o propuštění v Ah

- Nejhlubší výboj: Při každém hlubším vybití baterie se stará hodnota přepíše.
- **Poslední propuštění:** Monitor baterie sleduje vybíjení během aktuálního cyklu a zobrazuje největší zaznamenanou hodnotu spotřebovaných Ah od poslední synchronizace.
- · Průměrné vybití: Kumulativní odběr Ah dělený celkovým počtem cyklů.
- Kumulativní Ah čerpáno: Kumulativní počet ampérhodin odebraných z baterie za celou dobu životnosti monitoru baterie.

Energie v kWh

- Vybitá energie: Jedná se o celkové množství energie odebrané z baterie v kWh.
- Nabitá energie: Celková energie absorbovaná baterií v kWh.

<u>Nabíjení</u>

- Celkový počet nabíjecích cyklů: Počet nabíjecích cyklů za dobu životnosti monitoru baterie. Nabíjecí cyklus se počítá pokaždé, když stav nabití klesne pod 65 % a poté stoupne nad 90 %.
- · Doba od posledního plného nabití: Počet dní od posledního plného nabití.
- **Synchronizace:** Počet automatických synchronizací. Synchronizace se počítá pokaždé, když stav nabití klesne pod 90 %, než dojde k synchronizaci.

• Počet úplných vybití: Počet plných výbojů. Úplné vybití se počítá, když stav nabití dosáhne 0 %.

Napětí baterie

- Minimální napětí baterie: Nejnižší napětí baterie.
- · Maximální napětí baterie: Nejvyšší napětí baterie.

Napěťové alarmy

- · Alarmy nízkého napětí: Počet poplachů nízkého napětí.
- · Vysokonapěťové alarmy: Počet vysokonapěťových alarmů.

5.6. Alarmy

Monitor baterie může vyvolat poplach v následujících situacích:

- Nízký stav nabití baterie (SOC).
- · Nízké napětí baterie.
- · Vysoké napětí baterie.

Alarm se aktivuje, když hodnota dosáhne nastavené prahové hodnoty, a deaktivuje se, když hodnota tuto prahovou hodnotu zruší. Prahové hodnoty jsou konfigurovatelné. Další informace naleznete v kapitole Nastavení alarmů [28].

Na displeji hlavní jednotky se zobrazí alarm, zazní zvukový signál, začne blikat podsvícení displeje a na displeji se zobrazí ikona alarmu. Alarm je potvrzen po stisknutí tlačítka. Ikona alarmu se však zobrazuje tak dlouho, dokud stav alarmu trvá. Programovatelné relé může být spuštěno v závislosti na konfiguraci nastavení alarmu.

Alarm je také softwarový alarm.

Při připojení k aplikaci VictronConnect se alarm zobrazí v aplikaci, pokud je aktivní. Případně když je monitor baterie připojen k zařízení GX, alarm se zobrazí na displeji zařízení GX nebo na portálu VRM.

V případě aplikace VictronConnect je alarm potvrzen po stisknutí tlačítka. A v případě zařízení GX je alarm potvrzen při zobrazení v oznámeních. Ikona alarmu se zobrazuje tak dlouho, dokud stav alarmu trvá.

Time remaining	Infinite	<	Notifications	▲ 奈 16:51
Mid voltage	04:53 PM	⚠	SmartShunt 500A/50mV Alarm Mid-point voltage	2020-03-03 15:14 100.1%
A Alerts	^		^실 Pages	≡ Menu

Vlevo: alarm zobrazený v aplikaci VictronConnect. Vpravo: alarm zobrazený na zařízení GX.

5.7. Synchronizace monitoru baterie

Pro spolehlivý odečet se musí stav nabití zobrazený monitorem baterie pravidelně sám synchronizovat se skutečným stavem nabití baterie. To má zabránit driftu hodnoty "Stav nabití" v průběhu času. Synchronizace obnoví stav nabití baterie na 100 %.

5.7.1. Automatická synchronizace

Synchronizace je automatický proces a dojde k ní po úplném nabití baterie. Monitor baterie se podívá na několik parametrů, aby zjistil, zda je baterie plně nabitá. Za plně nabitou považuje baterii, když napětí dosáhne určité hodnoty a proud po určitou dobu klesne pod určitou hodnotu.

Tyto parametry se nazývají:

- Nabíjecí napětí plovoucí napětí nabíječky baterií.
- · Zadní proud procento kapacity baterie.
- · Doba detekce nabití čas v minutách.

Jakmile jsou tyto 3 parametry splněny, monitor baterie nastaví hodnotu stavu nabití na 100 %, čímž dojde k synchronizaci stavu nabití.

Příklad:

V případě 12V baterie monitor baterie obnoví stav nabití baterie na 100 %, jakmile jsou všechny tyto parametry splněny:

- Napětí je vyšší než 13,2 V,
- nabíjecí proud je menší než 4,0 % celkové kapacity baterie (např. 8 A u 200Ah baterie) a,
- · Uplynuly 3 minuty, zatímco jsou splněny napěťové i proudové podmínky.

Pokud monitor baterie neprovádí pravidelnou synchronizaci, začne se hodnota stavu nabití časem měnit. To je způsobeno malými nepřesnostmi monitoru baterie a odhadem Peukertova exponentu [34]. Jakmile je baterie plně nabitá a nabíječka přejde do fáze plovoucího stavu, je baterie plná a monitor baterie se automaticky synchronizuje nastavením hodnoty stavu nabití na 100 %.

5.7.2. Ruční synchronizace

V případě potřeby lze monitor baterie synchronizovat ručně. To lze provést stisknutím tlačítka "Synchronizovat" v aplikaci VictronConnect. Přejděte na "settings" (nastavení) a poté na "battery settings" (nastavení baterie).

Případně lze monitor baterie synchronizovat v běžném provozním režimu současným stisknutím a podržením tlačítka . Tlačítka + a - po dobu 3 sekund.

Ruční synchronizace může být nutná v situacích, kdy se monitor baterie nesynchronizuje automaticky. To je například nutné při první instalaci nebo po přerušení dodávky napětí do monitoru baterií.

Ruční synchronizace může být nutná také v případě, že baterie nebyla plně nabita nebo pokud monitor baterie nezjistil, že baterie byla plně nabita, protože bylo nesprávně nastaveno nabíjecí napětí, proud nebo čas. V takovém případě zkontrolujte nastavení a ujistěte se, že se baterie pravidelně plně nabíjí.

6. Propojení

Monitor baterií lze připojit k dalším zařízením, v této kapitole je popsáno, jak to lze provést.

6.1. Aplikace VictronConnect přes USB

Aplikace VictronConnect se umí připojit nejen přes Bluetooth, ale také přes USB. Připojení přes USB je nezbytné při připojení k verzi aplikace VictronConnect pro Windows a volitelné při použití verze pro MacOS nebo Android. Upozorňujeme, že v případě připojení k telefonu nebo tabletu se systémem Android může být zapotřebí kabel "USB on the Go".

Pro připojení přes USB budete potřebovat rozhraní VE.Direct to USB. Toto rozhraní slouží k připojení počítače k monitoru baterie. další informace naleznete na stránce produktu VE.Direct to USB interface.

Další informace naleznete také v příručce k aplikaci VictronConnect.

Příklad připojení rozhraní VE.Direct k USB mezi monitorem baterie a počítačem.

#	Popis
А	VE.Přímé rozhraní USB.
В	Počítač nebo notebook.

6.2. Připojení k zařízení GX a portálu VRM

Zařízení GX, jako je Cerbo GX, je zařízení Victron Energy, které zajišťuje řízení a monitorování všech zařízení Victron, která jsou k němu připojena. Ovládání a monitorování zařízení GX a k němu připojených zařízení lze provádět lokálně nebo vzdáleně prostřednictvím našeho bezplatného portálu Victron Remote Monitoring, portálu VRM.

Monitor baterie lze připojit k zařízení GX pomocí kabelu VE.Direct. Kabely VE.Direct jsou k dispozici v délkách od 0,3 do 10 metrů a jsou k dispozici s přímými nebo pravoúhlými konektory. Alternativně lze monitor baterií připojit k zařízení GX také pomocí rozhraní VE.Direct to USB.

Po připojení lze ze zařízení GX vyčíst všechny sledované parametry baterie.

<	BMV-700		15:06
Battery	26.15V	-5.7A	-149W
State of charge			100%
Consumed AmpHours 0			
Time-to-go			10d 0h
Relay state			On
Alarm state			Ok
<u>네</u> Pages	~	≡M	enu

Informace o monitoru baterie zobrazené zařízením GX.

Příklad připojení monitoru baterie k zařízení GX.

6.3. Připojení k síti VE.Smart

Všimněte si, že síť VE.Smart je možná pouze prostřednictvím připojení Bleutooth. Chcete-li monitor baterie vybavit rozhraním Bluetooth, použijte klíč VE.Direct Bluetooth Smart.

Všimněte si, že BMV-700 může přenášet pouze napětí baterie a proud baterie do sítě VE.Smart. Nemůže přenášet teplotu baterie. Pokud potřebujete teplotu baterie, použijte místo toho zařízení BMV 700, BMV-712, SmartShunt nebo SmartShunt IP65. Další informace naleznete na naší produktové stránce monitoru baterií.

Síť VE.Smart je bezdrátová síť, která umožňuje řadě produktů Victron vyměňovat si informace prostřednictvím Bluetooth. Monitor baterie může se sítí sdílet následující informace:

- Napětí baterie.
- · Proud baterie.

Chcete-li monitor baterie zapojit do sítě VE.Smart, musíte vytvořit síť nebo se připojit k existující síti. Nastavení najdete v aplikaci VictronConnect. Přejděte na stránku monitoru baterie a poté na: nastavení > inteligentní sítě. Další informace naleznete v příručce k síti VE.Smart.

Vytvoření sítě VE.Smart pomocí aplikace VictronConnect.

6.4. Vlastní integrace

Upozorňujeme, že se jedná o pokročilou funkci, která vyžaduje znalosti programování.

Komunikační port VE.Direct lze použít ke čtení dat a změně nastavení. Implementace protokolu VE.Direct je velmi jednoduchá. Přenos dat do monitoru baterií není u jednoduchých aplikací nutný: monitor baterií automaticky odesílá všechny údaje každou sekundu.

Všechny podrobnosti jsou vysvětleny v dokumentu Datová komunikace s produkty Victron Energy.

7. Všechny funkce a nastavení

V této kapitole jsou vysvětlena všechna nastavení monitoru baterie. Kromě toho máme k dispozici také video, které vysvětluje tato nastavení a jejich vzájemnou interakci pro dosažení přesného monitorování olověných i lithiových baterií.

Odkaz na video:

https://www.youtube.com/embed/mEN15Z_S4kE

7.1. Jak změnit nastavení

Nastavení lze měnit pomocí hlavní jednotky monitoru baterie nebo pomocí aplikace VictronConnect.

7.1.1. Přístup k nastavení prostřednictvím hlavní jednotky

Přístup k parametrům nastavení a jejich změna se provádí pomocí tlačítek na hlavní jednotce následujícím způsobem:

Stisknutím tlačítka SETUP na dvě sekundy získáte přístup k těmto funkcím a pomocí tlačítek + a - je můžete procházet.

- · Stisknutím tlačítka SELECT přejděte k požadovanému parametru.
- · Pro přizpůsobení použijte tlačítko SELECT a tlačítka + a -. Nastavení potvrdí krátké pípnutí.
- Stisknutím SETUP se kdykoli vrátíte k rolovacímu textu a dalším stisknutím se vrátíte do normálního režimu.

7.1.2. Přístup k nastavení prostřednictvím aplikace VictronConnect

Pro přístup k parametrům nastavení a jejich změnu postupujte následovně:

- Kliknutím na symbol nastavení přejděte do nabídky nastavení baterie.
- Chcete-li přejít z nabídky obecných nastavení do nabídky nastavení produktu, klikněte na symbol nabídky.

Informace o tom, jak se pomocí aplikace VictronConnect připojit k monitoru baterie, najdete v kapitole Aplikace VictronConnect [11].

7.1.3. Ukládání, načítání a sdílení nastavení v aplikaci VictronConnect

V nabídce nastavení najdete následující 3 symboly:

Dložit nastavení do souboru - uloží nastavení pro referenci nebo pro pozdější použití.

L Načíst nastavení ze souboru - načte dříve uložené nastavení.

Sdílet soubor s nastavením - umožňuje sdílet soubor s nastavením prostřednictvím e-mailu, zprávy, airdropu atd. Dostupné možnosti sdílení závisí na použité platformě.

Další informace o těchto funkcích naleznete v příručce VictronConnect.

7.2. Nastavení baterie

Nastavení baterie lze použít k jemnému vyladění monitoru baterie. Při změně těchto nastavení buďte opatrní, protože změna může ovlivnit výpočty stavu nabití monitoru baterie.

7.2.1. Kapacita baterie

Tento parametr slouží k tomu, aby monitor baterie zjistil, jak velká je baterie. Toto nastavení by mělo být provedeno již při první instalaci.

Nastavení je kapacita baterie v ampérhodinách (Ah).

Další informace o kapacitě baterie a souvisejícím Peukertově exponentu najdete v kapitole Kapacita baterie a Peukertův exponent [34].

Nastavení	Výchozí	Rozsah	Velikost kroku
Kapacita baterie (nastavení 01)	200Ah	1 - 9999Ah	1Ah

7.2.2. Nabité napětí

Aby se baterie považovala za plně nabitou, musí být její napětí vyšší než tato hodnota. Jakmile monitor baterie zjistí, že napětí baterie dosáhlo tohoto parametru "nabité napětí" a proud na určitou dobu klesl pod parametr "koncový proud [24]", nastaví monitor baterie stav nabití na 100 %.

Nastavení	Výchozí	Rozsah	Velikost kroku
	13,2 V (jmenovitých 12 V)		
Nabité napětí (nastavení 02)	26,4 V (jmenovité napětí 24 V)	0 - 95V	0.1V
	52,8 V (jmenovité napětí 48 V)		

Parametr "nabíjené napětí" by měl být nastaven na hodnotu 0,2 V nebo 0,3 V pod plovoucím napětím

nabíječky. Níže uvedená tabulka uvádí doporučené nastavení pro olověné akumulátory.

Jmenovité napětí baterie	Nastavení nabíjecího napětí
12V	13.2V
24V	26.4V
36V	39.6V
48V	52.8V
60V	66V

7.2.3. Podlaha pro vypouštění

Parametr "Podlaha pro vypouštění" se používá při výpočtu "zbývajícího času". Monitor baterie vypočítá dobu, která je potřebná k dosažení nastavené "podlahy vybíjení [24]". Používá se také k nastavení výchozích hodnot alarmu stavu nabití.

U olověných akumulátorů nastavte tuto hodnotu na 50 % a u lithiových na nižší hodnotu.

Všimněte si, že toto nastavení se zobrazí pouze při přístupu k monitoru baterie prostřednictvím aplikace VictronConnect. V případě, že je k monitoru baterie přistupováno přes hlavní jednotku, viz místo toho nastavení relé nízkého stavu nabití (SoC) [27].

Nastavení	Výchozí nastavení	Rozsah	Velikost kroku
Podlaha pro vypouštění	50%	0 - 99%	1%

7.2.4. Zadní proud

Baterie je považována za plně nabitou, jakmile nabíjecí proud klesne pod tento parametr "Tail current". Parametr "Tail current" je vyjádřen v procentech kapacity baterie.

Všimněte si, že některé nabíječky baterií přestanou nabíjet, když proud klesne pod nastavenou mez. V těchto případech musí být koncový proud nastaven vyšší než tato prahová hodnota.

Jakmile monitor baterie zjistí, že napětí baterie dosáhlo nastaveného parametru "Nabité napětí [24]" a proud po určitou dobu klesl pod tento parametr "Koncový proud", nastaví monitor baterie stav nabití na 100 %.

Nastavení	Výchozí	Rozsah	Velikost kroku
Zadní proud (nastavení 03)	4.00%	0.50 - 10.00%	0.1%

7.2.5. Doba detekce nabití

To je doba, po kterou musí být splněn parametr "Nabité napětí [24]" a parametr "Koncový proud [24]", aby se baterie považovala za plně nabitou.

Nastavení	Výchozí nastavení	Rozsah	Velikost kroku
Doba detekce nabití (nastavení 04)	3 minuty	0 - 100 minut	1 minuta

7.2.6. Peukertův exponent

Nastavte parametr Peukertova exponentu podle specifikačního listu baterie. Pokud Peukertův exponent není znám, nastavte jej na hodnotu 1,25 pro olověné akumulátory a 1,05 pro lithiové akumulátory. Hodnota 1,00 Peukertovu kompenzaci deaktivuje. Hodnotu

Peukertovy kompenzace pro olověné akumulátory lze vypočítat. Další informace o výpočtu Peukertovy kompenzace, Peukertově exponentu a jeho vztahu ke kapacitě akumulátoru najdete v kapitole Kapacita akumulátoru a Peukertův exponent [34].

Nastavení	Výchozí	Rozsah	Velikost kroku
Peukertův exponent (nastavení 05)	1.25	1.00 - 1.50	0.01

7.2.7. Faktor účinnosti nabíjení

"Faktor účinnosti nabíjení" kompenzuje ztráty kapacity (Ah) během nabíjení. Nastavení 100 % znamená, že nedochází k žádným ztrátám.

Účinnost nabíjení 95 % znamená, že do baterie musí být přivedeno 10 Ah, aby se do ní skutečně uložilo 9,5 Ah. Účinnost nabíjení baterie závisí na typu baterie, jejím stáří a způsobu používání. Monitor baterie tento jev zohledňuje pomocí faktoru účinnosti nabíjení.

Účinnost nabíjení olověného akumulátoru je téměř 100 %, pokud nedochází k tvorbě plynu. Plynatost znamená, že část nabíjecího proudu se nepřemění na chemickou energii, která se ukládá v deskách akumulátoru, ale použije se k rozkladu vody na kyslík a plynný vodík (vysoce výbušný!). Energii uloženou v deskách lze získat zpět při dalším vybíjení, zatímco energie použitá k rozkladu vody se ztrácí. U zaplavených baterií lze snadno pozorovat plynování. Vezměte prosím na vědomí, že konec nabíjecí fáze uzavřených (VRLA) gelových a AGM baterií "pouze s kyslíkem" má rovněž za následek sníženou účinnost nabíjení.

Nastavení	Výchozí nastavení	Rozsah	Velikost kroku
Faktor účinnosti nabíjení (nastavení 06)	95%	50 - 100%	1%

7.2.8. Aktuální prahová hodnota

Pokud měřený proud klesne pod parametr "Current threshold", bude považován za nulový. Parametr "Current threshold" se používá k potlačení velmi malých proudů, které mohou negativně ovlivnit dlouhodobý stav odečtu náboje v rušném prostředí. Pokud je například skutečný dlouhodobý proud 0,0 A a v důsledku vnášeného šumu nebo malých posunů naměří monitor baterie 0,05 A, může monitor baterie dlouhodobě nesprávně indikovat, že je baterie vybitá nebo že ji bude třeba dobít. Pokud je v tomto příkladu nastavena prahová hodnota proudu na 0,1A, monitor baterie počítá s 0,0A, takže chyby jsou eliminovány.

Hodnota 0,0A tuto funkci deaktivuje.

Nastavení	Výchozí	Rozsah	Velikost kroku
Aktuální prahová hodnota (nastavení 07)	0.10A	0.00 - 2.00A	0.01A

7.2.9. Průměrná doba do odchodu

Perioda průměrování v čase určuje časové okno (v minutách), ve kterém pracuje filtr klouzavého průměrování. Hodnota 0 (nula) filtr deaktivuje a poskytuje okamžitý odečet (v reálném čase). Zobrazená hodnota "Zbývající čas" však může silně kolísají. Výběrem nejdelší doby, tedy 12 minut, zajistíte, že do výpočtu "Zbývajícího času" budou zahrnuty pouze dlouhodobé výkyvy zatížení.

Nastavení	Výchozí	Rozsah	Velikost kroku
Doba průměrování (nastavení 08)	3 minuty	0 - 12 minut	1 minuta

7.2.10. Synchronizované spouštění baterie

Všimněte si, že pokud je nastavení monitoru baterie přístupné přes hlavní jednotku, bude toto nastavení součástí různých nastavení, a pokud je přístupné přes VictronConnect, bude součástí nastavení baterie.

Stav nabití baterie se po zapnutí monitoru baterie změní na 100 %. Je-li nastaveno na ON, bude se monitor baterie po zapnutí považovat za synchronizovaný, což povede ke stavu nabití 100 %. Pokud je nastaveno na hodnotu OFF, monitor baterie se

považovat za nesynchronizovaný při zapnutí, což má za následek stav nabití, který není znám až do první skutečné synchronizace.

Uvědomte si, že mohou nastat situace, kdy je třeba při nastavení této funkce na ON věnovat zvláštní pozornost. Jedna z těchto situací nastává v systémech, kde je baterie často odpojena od monitoru baterie, například na lodi. Pokud opustíte loď a odpojíte stejnosměrný systém přes hlavní stejnosměrný jistič a v té chvíli byly baterie nabité například na 75 %. Po návratu na loď je stejnosměrný systém znovu připojen a monitor baterií nyní ukazuje 100 %. To vyvolá falešný dojem, že baterie jsou plné, zatímco ve skutečnosti jsou částečně vybité.

Existují dva způsoby, jak tento problém vyřešit: jedním z nich je neodpojovat monitor baterie, když jsou baterie částečně vybité, nebo vypnout funkci "synchronizace startů baterie". Nyní se při opětovném připojení monitoru baterií zobrazí stav nabití "----" a nebude ukazovat 100 %, dokud nebudou baterie zcela nabité. Upozorňujeme, že ponechání olověného akumulátoru v částečně vybitém stavu po delší dobu způsobí poškození akumulátoru.

Nastavení	Výchozí	Režimy
Synchronizovaný start (nastavení 70)	NA	ZAPNUTO/VYPNUTO

7.2.11. Stav nabití

Pomocí tohoto nastavení můžete ručně nastavit hodnotu stavu nabití. Toto nastavení je aktivní až po alespoň jedné synchronizaci monitoru baterie. Buď automaticky, nebo ručně.

Toto nastavení je k dispozici pouze při přístupu k monitoru baterie prostřednictvím aplikace VictronConnect.

Nastavení	Výchozí	Rozsah	Velikost kroku
Stav nabití	%	0.0 - 100%	0.1%

7.2.12. Synchronizace SoC na 100 %

Nastavení 10

Tuto možnost lze použít k ruční synchronizaci monitoru baterie.

Když přejdete na toto nastavení na hlavní jednotce, stiskněte tlačítko SELECT a synchronizujte monitor baterie na 100

%. V aplikaci VictronConnect stiskněte tlačítko "Synchronizovat" pro synchronizaci monitoru baterie na 100 %.

Další informace o tomto nastavení naleznete v odstavci Ruční synchronizace [20].

7.2.13. Kalibrace nulového proudu

Nastavení 09

Tuto možnost lze použít ke kalibraci nulového údaje, pokud monitor baterie ukazuje nenulový proud, i když není zatížen a baterie se nenabíjí.

Kalibrace nulového proudu není (téměř) nikdy nutná. Tento postup proveďte pouze v případě, že monitor baterie ukazuje proud, zatímco jste si naprosto jisti, že žádný skutečný proud neteče. Jediný způsob, jak se ujistit, je fyzicky odpojit všechny vodiče a kabely připojené k bočníku na straně LOAD AND CHARGER. To provedete tak, že vyšroubujete šroub bočníku a odpojíte všechny kabely a vodiče z této strany bočníku. Alternativa, tedy vypnutí zátěže nebo nabíječky, NENÍ dostatečně přesná, protože se tím neodstraní malé pohotovostní proudy.

Ujistěte se, že do baterie ani z baterie skutečně neteče žádný proud (odpojte kabel mezi zátěží a bočníkem), poté stiskněte tlačítko SELECT v nabídce hlavní jednotky nebo stiskněte tlačítko CALIBRATE v aplikaci VictronConnect.

Provedení kalibrace nulového proudu.

7.3. Nastavení relé

Monitor baterie je vybaven programovatelným relé. Tato nastavení slouží k naprogramování funkce relé.

Nastavení relé jsou ve výchozím nastavení vypnuta (kromě nastavení relé stavu nabití (SoC)). Chcete-li nastavení relé povolit, proveďte následující kroky:

- V aplikaci VictronConnect povolte nastavení relé posunutím posuvného tlačítka doprava.
- Prostřednictvím hlavní jednotky povolte nastavení relé změnou nastavené a nulové hodnoty na libovolnou hodnotu vyšší než nula.

7.3.1. Režim relé

Toto nastavení má následující režimy relé:

Nastavení	Výchozí režim	Režimy	Popis
	DFLT Výchozí režim.	K ovládání relé lze použít nastavení 16 až 31.	
Režim relé (nastavení 11)	DFLT	CHRG Režim nabíječky.	Relé sepne, když stav nabití klesne pod nastavení 16 (vybíjecí podlaha) nebo když napětí baterie klesne pod nastavení 18 (relé nízkého napětí). Relé se rozepne, když je stav nabití vyšší než nastavení 17 (vymazání relé stavu nabití) a napětí baterie je vyšší než nastavení 19 (vymazání relé nízkého napětí). Příkladem použití je řízení spouštění a zastavování generátoru spolu s nastaveními 14 a 15.
		REM Vzdálený režim.	Relé lze ovládat prostřednictvím rozhraní VE.Direct. Nastavení relé 12 a 14 až 31 jsou ignorována, protože relé je plně pod kontrolou zařízení připojeného přes rozhraní VE.Direct.

7.3.2. Inverzní relé

Tato funkce umožňuje volbu mezi normálně sepnutým (rozpínací kontakt) a normálně sepnutým (sepnutý kontakt) relé.

Při invertovaném stavu se invertují podmínky sepnutí a rozepnutí popsané ve všech nastaveních relé (s výjimkou stavu relé [27]).

Všimněte si, že nastavení "normálně pod napětím" mírně zvýší spotřebu energie monitoru baterie.

Nastavení	Výchozí režim	Režimy	Rozsah
Invorzní rolá (nastavoní 12)	OEE	OFF	Normálně bez napětí
inverzin reie (nastaveni 12)	OFF	NA	Normálně pod napětím

7.3.3. Stav relé

Jedná se o parametr pouze pro čtení, který zobrazuje, zda je relé rozepnuté nebo sepnuté (bez napětí nebo pod napětím).

Nastavení	Hodnota	Popis
	OTEVŘENO	Relé je rozepnuté (bez napětí).
Stav rele (nastaveni 15)	CLSD	Relé je sepnuté (pod napětím)

7.3.4. Minimální doba sepnutí relé

Nastavuje minimální dobu, po kterou zůstane relé pod napětím ve stavu "sepnuto".

Všimněte si, že se změní na "otevřeno" a bez napětí, pokud byla funkce relé invertována (nastavení Invert relé [27]).

Příkladem použití je nastavení minimální doby chodu generátoru, když je relé nastaveno na režim "nabíječka" (nastavení režimu relé [26]).

Nastavení	Výchozí	Rozsah	Velikost kroku
Minimální doba sepnutí relé (nastavení 14)	0 minut	0 - 8 hodin	1 minuta

7.3.5. Zpoždění vypnutí relé

Nastavuje dobu, po kterou musí trvat podmínka "de-energise relé", než se relé rozepne.

Příkladem použití je ponechání generátoru po určitou dobu v chodu, aby se lépe nabíjela baterie, když je relé nastaveno na režim "nabíječka" (nastavení režimu relé [26]).

Nastavení	Výchozí	Rozsah	Velikost kroku
Zpoždění vypnutí relé (nastavení 15)	0 minut	0 - 500 minut	1 minuta

7.3.6. Relé nízkého stavu nabití (SoC)

Když procento stavu nabití klesne pod hodnotu "nastaveného relé", relé sepne.

Když procento stavu nabití stoupne nad hodnotu "clear relay", relé se rozepne (se zpožděním, které závisí na nastavení Relay minimum closed time [27] a/nebo Relay off delay [27]).

Hodnota "clear relay" musí být větší než hodnota "set relay".

Nastavení	Výchozí	Rozsah	Velikost kroku
Nastavení hodnoty relé (nastavení 16)	50%	0 - 99%	1%
Vymazání hodnoty relé (nastavení 17)	90%	0 - 99%	1%

Pokud se hodnoty "set relay" a "clear relay" rovnají, stav nabití nebude schopen relé ovládat.

Všimněte si, že toto nastavení je také známé jako podlaha pro vypouštění. Údaj o době do vybití, který zobrazuje monitor baterie, se vztahuje k tomuto nastavení. Čas do vybití je doba, která zbývá do dosažení tohoto nastavení (dolní hranice vybití).

7.3.7. Nízkonapěťové relé

Pokud napětí baterie klesne pod hodnotu "nastaveného relé" na dobu delší než 10 sekund, relé sepne.

Když napětí baterie stoupne nad hodnotu "clear relay", relé se rozepne (se zpožděním, které závisí na nastavení Relay minimum closed time [27] a/nebo Relay off delay [27]).

Hodnota "clear relay" musí být větší než hodnota "set relay".

Nastavení	Výchozí	Rozsah	Velikost kroku
Nastavení hodnoty relé (nastavení 18)	0V	0 - 95V	0.1V
Vymazání hodnoty relé (nastavení 19)	0V	0 - 95V	0.1V

7.3.8. Vysokonapěťové relé

Pokud napětí baterie stoupne nad hodnotu "nastaveného relé" na dobu delší než 10 sekund, relé sepne.

Když napětí baterie klesne pod hodnotu "clear relay", relé se rozepne (se zpožděním, které závisí na nastavení Relay minimum closed time [27] a/nebo Relay off delay [27]).

Hodnota "clear relay" musí být větší než hodnota "set relay".

Nastavení	Výchozí	Rozsah	Velikost kroku
Nastavení hodnoty relé (nastavení 20)	0V	0 - 95V	0.1V
Vymazání hodnoty relé (nastavení 21)	0V	0 - 95V	0.1V

7.4. Nastavení alarmu

Monitor baterií BMV je vybaven alarmovým relé a bzučákem. Alarmy jsou viditelné také v aplikaci VictronConnect, když jsou připojeny k monitoru baterie, nebo slouží k odeslání poplachového signálu do zařízení GX.

Alarmy jsou ve výchozím nastavení vypnuté. Chcete-li je povolit, proveďte následující kroky:

- V aplikaci VictronConnect povolte alarm posunutím posuvného tlačítka doprava.
- · Prostřednictvím hlavní jednotky povolte alarm změnou hodnoty "set" a "clear" v nastavení alarmu na libovolnou hodnotu vyšší než nula.

7.4.1. Bzučák alarmu

Je-li tato funkce povolena (nastavena na ON), bzučák vydá zvukový signál, jakmile nastane stav alarmu. Po stisknutí tlačítka se bzučák přestane ozývat.

Pokud je vypnuto (nastaveno na OFF), bzučák nespustí alarm.

Nastavení	Výchozí	Režimy
		NA
Bzučak alarniu (nastaveni 52)	NA	OFF

7.4.2. Nastavení alarmu nízké SoC

Je-li tato funkce povolena, alarm se aktivuje, když stav nabití (SoC) klesne pod nastavenou hodnotu na dobu delší než 10 sekund. Alarm se deaktivuje, když stav nabití stoupne nad nastavenou hodnotu.

Nastavení	Výchozí	Rozsah	Kroky
Nastavení hodnoty alarmu (nastavení 33)	1%	0 - 100%	1%
Vymazání hodnoty alarmu (nastavení 34)	1%	0 - 100%	1%

7.4.3. Alarm nízkého napětí

Je-li tato funkce povolena, alarm se aktivuje, když napětí baterie klesne pod nastavenou hodnotu na dobu delší než 10 sekund. Alarm se deaktivuje, když napětí baterie stoupne nad nastavenou hodnotu.

Nastavení	Výchozí	Rozsah	Kroky
Nastavení hodnoty alarmu (nastavení 35)	1.1V	0 - 95.0V	0.1V
Vymazání hodnoty alarmu (nastavení 36)	1.0V	0 - 95.0V	0.1V

7.4.4. Vysokonapěťový alarm

Je-li tato funkce povolena, alarm se aktivuje, když napětí baterie stoupne nad nastavenou hodnotu na dobu delší než 10 sekund. Alarm se deaktivuje, když napětí baterie klesne pod nastavenou hodnotu.

Nastavení	Výchozí	Rozsah	Kroky
Nastavení hodnoty alarmu (nastavení 37)	1.1V	0 - 95.0V	0.1V
Vymazání hodnoty alarmu (nastavení 38)	1.0V	0 - 95.0V	0.1V

7.5. Nastavení displeje

7.5.1. Intenzita podsvícení

Intenzita podsvícení Toto nastavení se pohybuje od 0 (vždy vypnuto) do 9 (maximální intenzita).

Nastavení	Výchozí	Rozsah	Velikost kroku
Intenzita podsvícení (nastavení 49)	5	0 - 9	1

7.5.2. Stále zapnuté podsvícení

Pokud je nastaveno, podsvícení se po 60 sekundách nečinnosti automaticky nevypne.

Nastavení	Výchozí	Režimy

	Příručka - BMV- 700		
Podsvícení vždy zapnuté (nastavení 50)	OFF	NA OFF	

7.5.3. Rychlost posouvání

Rychlost posouvání displeje. Toto nastavení se pohybuje od 1 (velmi pomalé) do 5 (velmi rychlé).

Nastavení	Výchozí	Rozsah	Velikost kroku
Rychlost rolování (nastavení 51)	2	1 - 5	1

7.5.4. Hlavní displej napětí

Musí být nastaveno na ON, aby se v nabídce monitorování zobrazovalo napětí hlavní baterie.

Nastavení	Výchozí	Režimy
Zahananí blavníka nanžtí (nastavaní 50)	NA	NA
zobrazeni niavnino napeti (nastaveni 52)	NA	OFF

7.5.5. Aktuální zobrazení

Musí být nastaveno na ON, aby se v nabídce monitorování zobrazoval proud.

Nastavení	Výchozí	Režimy
Alstvální zehvození (nestovení 52)	NIA	NA
Aktualili zobrazelli (hastavelli 55)	NA NA	OFF

7.5.6. Zobrazení napájení

Musí být nastaveno na ON, aby se v nabídce monitorování zobrazilo měření výkonu.

Nastavení	Výchozí	Režimy
	NA	NA
	NA .	OFF

7.5.7. Spotřebovaný displej Ah

Pro zobrazení spotřebovaných Ah v nabídce monitorování musí být nastavena na ON.

Nastavení	Výchozí	Režimy
Zobrazení spotřebovaných Ah (nastavení 55)	NA	NA OFF

7.5.8. Zobrazení stavu nabití

Musí být nastaveno na ON, aby se v nabídce monitorování zobrazoval stav nabití baterie.

Nastavení	Výchozí	Rozsah	Velikost kroku
Zobrazení stavu nabití (nastavení 56)	5	1 - 5	1

7.5.9. Zobrazení času do odjezdu

Musí být nastaveno na ON, aby se v nabídce monitorování zobrazoval stav nabití.

Nastavení	Výchozí	Režimy
Zobrazení času do odjezdu (nastavení 57)	NA	NA OFF

7.6. Různá nastavení

7.6.1. Verze softwaru

Nastavení 61

Jedná se o nastavení pouze pro čtení. zobrazuje verzi firmwaru monitoru baterie.

Verze softwaru zobrazená na hlavní jednotce je stejná jako verze firmwaru zobrazená v nastaveních aplikace VictronConnect. Kromě toho aplikace VictronConnect umožňuje také aktualizaci firmwaru. Další informace naleznete v nastavení Firmware [32].

Nastavení	Výchozí	Režim
Verze softwaru (nastavení 61)	Zobrazuje verzi firmwaru monitoru baterie.	Pouze pro čtení

7.6.2. Obnovení výchozích nastavení

Nastavení 62

Toto nastavení hlavní jednotky obnoví všechna výchozí nastavení z výroby.

Výchozí nastavení lze obnovit také prostřednictvím aplikace VictronConnect. Další informace o tom, jak to provést, najdete v kapitole Obnovení výchozího nastavení [33].

Chcete-li obnovit výchozí nastavení, postupujte takto:

- Přejděte na nastavení 62: zobrazí se text "obnovit výchozí nastavení".
- · Stiskněte tlačítko SELECT na hlavní jednotce: zobrazí se blikající text "reset".
- · Znovu stiskněte tlačítko SELECT: ozve se pípnutí a všechna nastavení se vrátí do výchozího stavu z výroby.
- Pokud byla funkce resetování zadána omylem a bliká text "reset", stiskněte SETUP, abyste ji opustili a vrátili se do běžné nabídky nastavení.

Všimněte si, že obnovení výchozího nastavení nevymaže nastavení historie. Vymazání historie viz nastavení Vymazat historii [31].

V běžném provozním režimu lze obnovit tovární nastavení také současným stisknutím tlačítek SETUP a SELECT po dobu 3 sekund na hlavní jednotce. Upozorňujeme, že to je možné pouze v případě, že je vypnuto nastavení Lock setup [31].

7.6.3. Vymazat historii

Nastavení 63

Tímto nastavením se obnoví všechna výchozí nastavení z výroby. Chcete-li vymazat historii, postupujte takto:

- · Přejděte na nastavení 63: zobrazí se text "vymazat historii".
- · Stiskněte tlačítko SELECT na hlavní jednotce: zobrazí se blikající text "clear".
- · Znovu stiskněte tlačítko SELECT: ozve se pípnutí a všechna nastavení se vrátí do výchozího stavu z výroby.
- Pokud byla funkce resetování zadána omylem a bliká text "clear", stiskněte SETUP pro opuštění a návrat do běžné nabídky nastavení.

Historii lze vymazat také prostřednictvím aplikace VictronConnect, další informace o tom, jak to provést, najdete v kapitole Obnovení historie [32].

Uvědomte si, že údaje o historii jsou důležitým nástrojem pro sledování výkonu baterie a jsou také potřebné pro diagnostiku případných problémů s baterií. Historii nevymazávejte, pokud nedojde k výměně akumulátoru.

7.6.4. Nastavení zámku

Pokud je zapnuto, jsou všechna nastavení (kromě tohoto) uzamčena (pouze pro čtení) a nelze je měnit prostřednictvím hlavní jednotky. Všimněte si, že je lze stále měnit prostřednictvím aplikace VictronConnect.

Nastavení	Výchozí	Režimy
Nastavení zámku (nastavení 64)	OFF	ZAPNUTO/VYPNUTO

7.6.5. Bočníkový proud

Pokud se používá jiný bočník než ten, který je dodáván s monitorem baterie, použijte toto nastavení pro nastavení jmenovitého proudu bočníku.

Nastavení	Výchozí	Rozsah	Velikost kroku
Bočníkový proud (nastavení 65)	500A	1 - 9999A	1A

7.6.6. Boční napětí

Pokud je použit jiný bočník než ten, který je dodáván s monitorem baterií, použijte toto nastavení ke změně jmenovitého napětí bočníku.

Nastavení	Výchozí	Rozsah	Velikost kroku
Boční napětí (nastavení 66)	50mV	1 - 75 mV	1mV

7.6.7. Synchronizované spouštění baterie

Všimněte si, že pokud je nastavení monitoru baterie přístupné přes hlavní jednotku, bude toto nastavení součástí různých nastavení, a pokud je přístupné přes VictronConnect, bude součástí nastavení baterie.

Úplné informace o tomto nastavení naleznete v kapitole Spuštění synchronizace baterie [25].

Nastavení	Výchozí	Režimy
Synchronizovaný start (nastavení 70)	NA	ZAPNUTO/VYPNUTO

7.7. Další nastavení

Tato nastavení VictronConnect se nenacházejí v nabídce nastavení VictronConnect, ale v jiných částech aplikace VictronConnect.

7.7.1. Obnovení historie

Toto nastavení najdete v dolní části karty Historie.

Toto nastavení lze provést také prostřednictvím hlavní jednotky. Další informace naleznete v kapitole Vymazat historii [31].

Uvědomte si, že údaje o historii jsou důležitým nástrojem pro sledování výkonu baterie a jsou také potřebné pro diagnostiku případných problémů s baterií. Historii nevymazávejte, pokud nedojde k výměně akumulátoru.

7.7.2. Obnovení kódu PIN

/!\

Upozorňujeme, že kód PIN lze použít pouze při připojení k monitoru baterie přes Bluetooth.

Toto nastavení najdete v nastavení samotné aplikace VictronConnect. Monitor baterie opustíte kliknutím na šipku ←. Tím se vrátíte do seznamu zařízení aplikace VictronConnect. Nyní klikněte na symbol nabídky vedle výpisu monitoru baterie.

Otevře se nové okno, ve kterém můžete resetovat PIN kód na výchozí hodnotu: 000000. Abyste mohli resetovat kód PIN, musíte zadat jedinečný kód PUK monitoru baterie. Kód PUK je vytištěn na informační nálepce výrobku na monitoru baterií.

7.7.3. Sériové číslo

Sériové číslo naleznete v části informací o produktu monitoru baterie v aplikaci VictronConnect nebo na informační nálepce produktu na zadní straně hlavní jednotky monitoru baterie.

7.7.4. Vlastní název

Na obrazovce informací o produktu monitoru baterie můžete změnit název monitoru baterie. Ve výchozím nastavení se nazývá názvem produktu. Může však být zapotřebí vhodnější název, zejména pokud používáte více monitorů baterií v těsné blízkosti.

blízkosti, mohlo by dojít k záměně monitoru baterie, se kterým komunikujete. Můžete například přidat identifikační čísla k jejich názvu, jako např: Monitor baterií A, Monitor baterií B atd.

7.7.5. Firmware

Monitor baterie funguje na základě firmwaru.

Občas je k dispozici novější verze firmwaru. Nový firmware je vydáván za účelem přidání funkcí nebo opravy chyby. Přehled produktů v aplikaci VictronConnect zobrazuje verzi firmwaru monitoru baterie. Je zde také uvedeno, zda se jedná o nejnovější verzi firmwaru, a je zde tlačítko, které můžete stisknout pro aktualizaci firmwaru.

Při první instalaci se vždy doporučuje aktualizovat na nejnovější firmware (je-li k dispozici). Kdykoli se připojíte k monitoru baterie s aktuální verzí aplikace VictronConnect, zkontroluje se firmware, a pokud je k dispozici novější verze. k dispozici, vyzve vás k aktualizaci firmwaru. Aplikace VictronConnect obsahuje aktuální soubory firmwaru, takže k aktualizaci na nejnovější firmware není nutné připojení k internetu, pokud používáte nejnovější verzi aplikace VictronConnect.

Aktualizace firmwaru není povinná. Pokud se rozhodnete firmware neaktualizovat, můžete pouze odečítat údaje z monitoru baterie, ale nemůžete měnit nastavení. Nastavení lze měnit pouze v případě, že monitor baterie běží na nejnovějším firmwaru.

Další informace o aktualizacích firmwaru naleznete také v příručce k aplikaci VictronConnect v kapitole Aktualizace firmwaru.

Toto nastavení je k dispozici také prostřednictvím nastavení verze softwaru hlavní jednotky [31]. Upozorňujeme však, že se jedná o nastavení pouze pro čtení. Firmware nelze aktualizovat prostřednictvím hlavní jednotky.

7.7.6. Obnovení výchozího nastavení

Chcete-li vrátiť všechna nastavení na výchozí hodnoty, vyberte možnosť "Obnovit výchozí hodnoty". Vezměte prosím na vědomí, že se tím pouze obnoví všechna nastavení na výchozí hodnoty, historie se neobnoví.

Toto nastavení je k dispozici také prostřednictvím hlavní jednotky. Další informace naleznete v kapitole Obnovení výchozího nastavení [31].

8. Kapacita baterie a Peukertův exponent

Kapacita baterie se vyjadřuje v ampérhodinách (Ah) a udává, jaký proud může baterie dodávat po určitou dobu. Například pokud se baterie s kapacitou 100 Ah vybíjí konstantním proudem 5 A, bude baterie zcela vybitá za 20 hodin.

Rychlost vybíjení baterie se vyjadřuje jako hodnota C. Hodnota C udává, kolik hodin vydrží baterie s danou kapacitou. Hodnota 1C je rychlost 1h a znamená, že vybíjecí proud vybije celou baterii za 1 hodinu. Pro baterii s kapacitou 100 Ah to odpovídá vybíjecímu proudu 100 A. Rychlost 5C pro tuto baterii by byla 500 A po dobu 12 minut (1/5 hodiny) a rychlost C5 by byla 20 A po dobu 5 hodin.

Existují dva způsoby vyjádření hodnoty C baterie. Buď s číslem před C, nebo s číslem za C.

Například:

- 5C je stejný jako C0.2
- 1C je stejný jako C1
- 0,2C je stejný jako C5

Kapacita baterie závisí na rychlosti vybíjení. Čím rychlejší je rychlost vybíjení, tím menší kapacita je k dispozici. Vztah mezi pomalým nebo rychlým vybíjením lze vypočítat pomocí Peukertova zákona a vyjadřuje se Peukertovým exponentem. Některé chemické typy baterií trpí tímto jevem více než jiné. Olověné akumulátory jsou tímto jevem postiženy více než lithiové akumulátory. Monitor baterií tento jev zohledňuje pomocí Peukertova exponentu.

Příklad rychlosti vybíjení

Olověný akumulátor má jmenovitou kapacitu 100 Ah při C20, což znamená, že tento akumulátor může dodávat celkový proud 100 A po dobu 20 hodin rychlostí 5 A za hodinu. C20 = 100Ah (5 x 20 = 100).

Když se stejná 100Ah baterie zcela vybije za dvě hodiny, její kapacita se výrazně sníží. Kvůli vyšší rychlosti vybíjení může dávat pouze C2 = 56Ah.

Peukertův vzorec

Hodnota, kterou lze v Peukertově vzorci upravit, je exponent n: viz vzorec níže.

V monitoru baterie lze Peukertův exponent nastavit v rozsahu 1,00 až 1,50. Čím vyšší je Peukertův exponent, tím rychleji se efektivní kapacita "zmenšuje" s rostoucí rychlostí vybíjení. Ideální (teoretická) baterie má Peukertův exponent 1,00 a má pevnou kapacitu bez ohledu na velikost vybíjecího proudu. Výchozí nastavení Peukertova exponentu v monitoru baterií je následující 1.25. To je přijatelná průměrná hodnota pro většinu olověných

akumulátorů. Peukertova rovnice je uvedena níže:

Cp = ^{*In*} *x t* Kde Peukertův exponent n je:

$$n = \frac{\log t2 - \log t1}{\log I1 - \log I2}$$

Pro výpočet Peukertova exponentu budete potřebovat dvě jmenovité kapacity baterie. Obvykle se jedná o 20hodinovou rychlost vybíjení a 5hodinovou rychlost, ale může to být i 10hodinová a 5hodinová rychlost nebo 20hodinová a 10hodinová rychlost. V ideálním případě použijte nízkou vybíjecí kapacitu společně s podstatně vyšší kapacitou. Hodnoty kapacity baterie naleznete v datovém listu baterie. V případě pochybností se obratte na dodavatele baterií.

Stránka 39

Příklad výpočtu s použitím hodnot 5h a 20h

Hodnota C5 je 75 Ah. Hodnota t1 je 5h a vypočítá se I1:

$$I_1 = \frac{75Ah}{5h} = 15A$$

Hodnota C20 je 100 Ah. Hodnota t2 je 20h a vypočítá se I2:

$$I_2 = \frac{100Ah}{20h} = 5A$$

Peukertův exponent je:

$$n = \frac{\log 20 - \log 5}{\log 15 - \log 5} = 1.26$$

Peukertova kalkulačka je k dispozici na adrese http://www.victronenergy.com/ support-anddownloads/software#peukert-calculator.

Calculate Peukert's Exponent			
Type the b	Type the battery capacity for the 20hr discharge rate :		
ध :	5 hrs	: C5 rating :	75 Ah
t2 :	20 hrs	C20 rating	100 Ah
			Calculate
Equation :			
Peukert's	Peukert's exponent n = $\frac{\log 20 \cdot \log 5}{\log 15 \cdot \log 5}$ = 1.26		
Calculation	results :		
C20 rating	1:		Ah
Peukert's exponent : 1.26			
			<u>C</u> lose

Upozorňujeme, že Peukertův exponent je pouze hrubým přiblížením skutečnosti. V případě velmi vysokých proudů bude baterie poskytovat ještě menší kapacitu, než předpokládá pevný exponent. Nedoporučujeme měnit výchozí hodnotu v monitoru baterie, s výjimkou lithiových baterií.

9. Řešení problémů

9.1. Problémy s funkčností

9.1.1. Jednotka je mrtvá

Při prvním připojení by měl být displej hlavní jednotky aktivní.

Pokud tomu tak není, zkontrolujte pojistku v kabelu +B1 a také zkontrolujte samotný kabel a jeho svorky.

9.1.2. Nelze změnit nastavení VictronConnect

Nastavení lze měnit pouze v případě, že monitor baterie používá nejnovější firmware. Aktualizujte na nejnovější firmware pomocí aplikace VictronConnect.

9.2. Problémy s připojením

9.2.1. Nelze se připojit přes Bluetooth

Je velmi nepravděpodobné, že by rozhraní Bluetooth bylo vadné. Než vyhledáte podporu, můžete vyzkoušet několik tipů:

- Je monitor baterie připojen ke klíči VE.Direct Bluetooth Smart? Monitor baterií nemá vestavěnou funkci Bluetooth. Aby byl monitor baterií vybaven funkcí Bluetooth, je třeba připojit klíč VE.Direct Bluetooth Smart ke svorce VE.Direct hlavní jednotky.
- · Je monitor baterie zapnutý? Displej na hlavní jednotce by měl být aktivní. Pokud ne, viz kapitola Jednotka je vybitá [36].
- Je k monitoru baterie již připojen jiný telefon nebo tablet? K monitoru baterie může být v daném okamžiku připojen pouze jeden telefon nebo tablet. Ujistěte se, že nejsou připojena žádná další zařízení, a zkuste to znovu.
- Je aplikace VictronConnect aktuální?
- · Jste dostatečně blízko monitoru baterie? V otevřeném prostoru je maximální vzdálenost asi 20 metrů.
- Používáte verzi aplikace VictronConnect pro systém Windows? Tato verze se nedokáže připojit přes Bluetooth. Použijte místo toho systém Android, iOS nebo macOS (nebo použijte rozhraní USB - VE.Direct).
- Je v nastavení vypnuta funkce Bluetooth? Viz kapitola ???.

Problémy s připojením naleznete v části příručky VictronConnect: https://www.victronenergy.com/live/ victronconnect:start.

9.2.2. Ztráta kódu PIN

Upozorňujeme, že kód PIN lze použít pouze při připojení k monitoru baterie přes Bluetooth.

Pokud jste kód PIN ztratili, je třeba obnovit výchozí kód PIN, viz kapitola Obnovení kódu PIN [32].

Další informace a konkrétní pokyny naleznete v příručce VictronConnect: https://www.victronenergy.com/live/victronconnect:start.

9.3. Nesprávné odečty

9.3.1. Nabíjecí a vybíjecí proud jsou obrácené

Nabíjecí proud by měl být zobrazen jako kladná hodnota. Například: 1,45 A.

Vybíjecí proud by měl být uveden jako záporná hodnota. Například: -1,45 A.

Pokud jsou nabíjecí a vybíjecí proudy obrácené, je třeba vyměnit záporné napájecí kabely na monitoru baterie.

9.3.2. Neúplný aktuální odečet

Zápory všech zátěží a zdrojů náboje v systému musí být připojeny k mínusové straně bočníku.

Pokud je záporná zátěž nebo zdroj nabíjení připojen přímo k zápornému pólu baterie nebo ke straně "baterie minus" na bočníku, jejich proud neprotéká monitorem baterie a bude vyloučen z celkového údaje o proudu a stavu nabití.

Monitor baterie zobrazuje vyšší stav nabití, než je skutečný stav nabití baterie.

9.3.3. Proud se odečítá, zatímco žádný proud neteče

Pokud je odečítán proud, zatímco monitorem baterie neprotéká žádný proud, proveďte kalibraci nulového proudu [26] při vypnutých zátěžích nebo nastavte prahovou hodnotu proudu [25].

9.3.4. Nesprávný údaj o stavu nabití

Nesprávný stav nabití může být způsoben různými příčinami.

Nesprávné nastavení baterie

Následující parametr(y) budou mít vliv na výpočty stavu nabití, pokud byly nastaveny nesprávně:

- · Kapacita baterie.
- Peukertův exponent.
- · Faktor účinnosti nabíjení.

Nesprávný stav nabití v důsledku problému se synchronizací:

Stav nabití je vypočtená hodnota, kterou je třeba čas od času vynulovat (synchronizovat).

Proces synchronizace je automatický a provádí se vždy, když je baterie plně nabitá. Monitor baterie určí, že je baterie plně nabitá, když jsou splněny všechny 3 podmínky "nabito". Podmínky "nabito" jsou následující:

- · Nabité napětí (Voltage).
- · Zadní proud (% kapacity baterie).
- · Doba detekce nabíjení (v minutách).

Praktický příklad podmínek, které musí být splněny před provedením synchronizace:

- Napětí baterie musí být vyšší než 13,8 V.
- Nabíjecí proud musí být menší než 0,04 x kapacita baterie (Ah). Pro 200Ah baterii je to 0,04 x 200 = 8 A.
- · Obě výše uvedené podmínky musí být stabilní po dobu 3 minut.

Pokud není baterie plně nabitá nebo pokud nedojde k automatické synchronizaci, začne hodnota stavu nabití kolísat a nakonec nebude odpovídat skutečnému stavu nabití baterie.

Následující parametry budou mít vliv na automatickou synchronizaci, pokud byly nastaveny nesprávně:

- Nabité napětí.
- Zadní proud.
- · Doba detekce nabití.
- · Občas nedojde k úplnému nabití baterie.

Další informace o těchto parametrech naleznete v kapitole: "Nastavení baterie".

Nesprávný stav nabití v důsledku nesprávného odečtu proudu:

Stav nabití se vypočítá podle toho, jaký proud teče do baterie a jaký z ní. Pokud je údaj o proudu nesprávný, je nesprávný i stav nabití. Viz odstavec Neúplný údaj proudu [37].

9.3.5. Chybí stav nabití

To znamená, že monitor baterie je v nesynchronizovaném stavu. K tomu může dojít, když byl monitor baterií právě nainstalován nebo poté, co byl nějakou dobu bez napájení a je znovu zapínán.

Chcete-li to napravit, plně nabijte baterii. Jakmile se baterie přiblíží k plnému nabití, měl by se monitor baterie automaticky synchronizovat. Pokud se tak nestane, zkontrolujte nastavení synchronizace.

Pokud víte, že je baterie plně nabitá, ale nechcete čekat na synchronizaci baterie, proveďte ruční synchronizaci, viz odstavec Synchronizace SoC na 100 % [26].

9.3.6. Stav nabití nedosahuje 100 %

Jakmile je baterie plně nabitá, monitor baterie se automaticky synchronizuje a obnoví stav nabití na 100 %. V případě, že monitor baterie nedosáhne stavu nabití 100 %, proveďte následující kroky:

- Plně nabijte baterii a zkontrolujte, zda monitor baterie správně rozpozná, zda je baterie plně nabitá.
- Pokud monitor baterie nezjistí, že je baterie plně nabitá, je třeba zkontrolovat nebo upravit nastavení nabíjeného napětí, koncového proudu a/nebo doby nabíjení. Další informace naleznete v části Automatická synchronizace [19].

9.3.7. Stav nabití vždy ukazuje 100 %

Jedním z důvodů může být špatné zapojení záporných kabelů vstupujících a vystupujících z monitoru baterie, viz Nabíjecí a vybíjecí proud jsou obrácené [36].

9.3.8. Stav nabití se při nabíjení nezvyšuje dostatečně rychle nebo příliš rychle

K tomu může dojít, když se monitor baterie domnívá, že je baterie větší nebo menší než ve skutečnosti. Zkontrolujte, zda je správně nastavena kapacita baterie [13].

9.3.9. Nesprávné měření napětí baterie

Zkontrolujte, zda není problém s kabelem +B1. Možná je vadná pojistka, samotný kabel nebo některá ze svorek, případně je uvolněný spoj.

Zkontrolujte, zda nedošlo k nesprávnému zapojení: kabel +B1 musí být připojen ke kladné straně akumulátoru, nikoliv doprostřed akumulátoru.

9.3.10. Problémy se synchronizací

Pokud se monitor baterie nesynchronizuje automaticky, může být jednou z možností, že baterie nikdy nedosáhne plně nabitého stavu. Plně nabijte baterii a zjistěte, zda stav nabití nakonec ukazuje 100 %.

Další možností je, že by se mělo snížit nastavení nabíjecího napětí [24] a/nebo zvýšit nastavení zadního proudu [24].

Je také možné, že se monitor baterie synchronizuje příliš brzy. To se může stát u solárních systémů nebo u systémů s kolísavými nabíjecími proudy. V takovém případě změňte následující nastavení:

- Zvyšte "nabíjecí napětí [24]" na hodnotu mírně pod absorpčním nabíjecím napětím. Například: 14,2 V v případě absorpčního napětí 14,4 V (pro 12V baterii).
- Zvyšte "dobu detekce nabití [24]" a/nebo snižte "zadní proud [24]", abyste zabránili předčasnému resetu v důsledku průchodu mraků.

10. Technické údaje

10.1. Technické údaje

Monitor baterie	BMV-700
Rozsah napájecího napětí	6,5 - 95 Vdc
Odběr proudu (vypnuté podsvícení)	< 4mA
Kapacita baterie (Ah)	1 - 9999Ah
Rozsah provozních teplot	-40 +50°C (-40 - 120°F)
VE.Přímý komunikační port	Ano
Relé	60 V / 1 A normálně otevřený (funkce může být invertovaná)
ROZLIŠENÍ A PŘESNOST (s bočníkem 500 A)	
Aktuální	± 0.01A
Napětí	± 0.01V
Amp hodin	± 0,1Ah
Stav nabití (0 - 100 %)	± 0.1%
Time-to-go	± 1 min
Přesnost měření proudu	± 0.4%
Přesnost měření napětí	± 0.3%
INSTALACE A ROZMĚRY	
Instalace	Montáž pod omítku
Průměr přední části hlavní jednotky	63 mm (2,5 palce)
Přední rámeček hlavní jednotky	69 x 69 mm (2,7 x 2,7 palce)
Průměr a hloubka těla hlavní jednotky	52 mm (2,0 palce) a 31 mm (1,2 palce)
Šrouby bočníkového připojení	M10 (0,3937 palce)
Kategorie ochrany hlavní jednotky	IP55 (není určeno pro venkovní použití)
STANDARDY	
Bezpečnost	EN 60335-1
Emise / odolnost	EN 55014-1 / EN 55014-2
Automobilový průmysl	ECE R10-4 / EN 50498
PŘÍSLUŠENSTVÍ	
Bočník (součástí dodávky)	500A / 50mV
Kabely (součástí dodávky)	10 metrů 6žilového UTP s konektory RJ12.
	1 kabel s pomalou pojistkou 1A pro kladné připojení baterie.
Snímač teploty	Volitelné (ASS000100000)

11. Příloha

11.1. Rozměry hlavní jednotky BMV

11.2. Rozměry bočníku

Distributor:

Neosolar spol. s r.o.
Pávovská 5456/27a
Jihlava
58601

Tel.: +420 567 313 652 E-mail: info@neosolar.cz

www.neosolar.cz

Sériové číslo:

Verze Datum : 12 : květen 2023

Victron Energy B.V. De Paal 35 | 1351 JG Almere PO Box 50016 | 1305 AA Almere | Nizozemsko

Telefon	+31 (0)36 535 97 00
Zákaznická podpora	: +31 (0)36 535 97 03
Fax	: +31 (0)36 535 97 40

E-mail : <u>sales@victronenergy.com</u>

www.victronenergy.com